In numerical analysis, polynomial interpolation is the interpolation of a given bivariate data set by the polynomial of lowest possible degree that passes through the points of the dataset.
Given a set of n + 1 data points , with no two the same, a polynomial function is said to interpolate the data if for each .
There is always a unique such polynomial, commonly given by two explicit formulas, the Lagrange polynomials and Newton polynomials.
The original use of interpolation polynomials was to approximate values of important transcendental functions such as natural logarithm and trigonometric functions. Starting with a few accurately computed data points, the corresponding interpolation polynomial will approximate the function at an arbitrary nearby point. Polynomial interpolation also forms the basis for algorithms in numerical quadrature (Simpson's rule) and numerical ordinary differential equations (multigrid methods).
In computer graphics, polynomials can be used to approximate complicated plane curves given a few specified points, for example the shapes of letters in typography. This is usually done with Bézier curves, which are a simple generalization of interpolation polynomials (having specified tangents as well as specified points).
In numerical analysis, polynomial interpolation is essential to perform sub-quadratic multiplication and squaring, such as Karatsuba multiplication and Toom–Cook multiplication, where interpolation through points on a product polynomial yields the specific product required. For example, given a = f(x) = a0x0 + a1x1 + ··· and b = g(x) = b0x0 + b1x1 + ···, the product ab is a specific value of W(x) = f(x)g(x). One may easily find points along W(x) at small values of x, and interpolation based on those points will yield the terms of W(x) and the specific product ab. As fomulated in Karatsuba multiplication, this technique is substantially faster than quadratic multiplication, even for modest-sized inputs, especially on parallel hardware.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Basic signal processing concepts, Fourier analysis and filters. This module can
be used as a starting point or a basic refresher in elementary DSP
Adaptive signal processing, A/D and D/A. This module provides the basic
tools for adaptive filtering and a solid mathematical framework for sampling and
quantization
Advanced topics: this module covers real-time audio processing (with
examples on a hardware board), image processing and communication system design.
L'objectif est de comprendre la méthode des éléments finis i.e. les formulations variationnelles faibles et fortes, l'assemblage des matrices élémentaires, la formulation globale et les schémas de rés
In the mathematical field of numerical analysis, interpolation is a type of estimation, a method of constructing (finding) new data points based on the range of a discrete set of known data points. In engineering and science, one often has a number of data points, obtained by sampling or experimentation, which represent the values of a function for a limited number of values of the independent variable. It is often required to interpolate; that is, estimate the value of that function for an intermediate value of the independent variable.
In the mathematical field of numerical analysis, Runge's phenomenon (ˈʁʊŋə) is a problem of oscillation at the edges of an interval that occurs when using polynomial interpolation with polynomials of high degree over a set of equispaced interpolation points. It was discovered by Carl David Tolmé Runge (1901) when exploring the behavior of errors when using polynomial interpolation to approximate certain functions. The discovery was important because it shows that going to higher degrees does not always improve accuracy.
In numerical analysis, the Lagrange interpolating polynomial is the unique polynomial of lowest degree that interpolates a given set of data. Given a data set of coordinate pairs with the are called nodes and the are called values. The Lagrange polynomial has degree and assumes each value at the corresponding node, Although named after Joseph-Louis Lagrange, who published it in 1795, the method was first discovered in 1779 by Edward Waring. It is also an easy consequence of a formula published in 1783 by Leonhard Euler.
We introduce robust principal component analysis from a data matrix in which the entries of its columns have been corrupted by permutations, termed Unlabeled Principal Component Analysis (UPCA). Using algebraic geometry, we establish that UPCA is a well-de ...
We study quantifiers and interpolation properties in orthologic, a non-distributive weakening of classical logic that is sound for formula validity with respect to classical logic, yet has a quadratic-time decision procedure. We present a sequent-based pro ...
Cham2024
, ,
We study quantifiers and interpolation properties in ortho- logic, a non-distributive weakening of classical logic that is sound for formula validity with respect to classical logic, yet has a quadratic-time decision procedure. We present a sequent-based p ...