QR decompositionIn linear algebra, a QR decomposition, also known as a QR factorization or QU factorization, is a decomposition of a matrix A into a product A = QR of an orthonormal matrix Q and an upper triangular matrix R. QR decomposition is often used to solve the linear least squares problem and is the basis for a particular eigenvalue algorithm, the QR algorithm. Any real square matrix A may be decomposed as where Q is an orthogonal matrix (its columns are orthogonal unit vectors meaning ) and R is an upper triangular matrix (also called right triangular matrix).
Multiplicative functionIn number theory, a multiplicative function is an arithmetic function f(n) of a positive integer n with the property that f(1) = 1 and whenever a and b are coprime. An arithmetic function f(n) is said to be completely multiplicative (or totally multiplicative) if f(1) = 1 and f(ab) = f(a)f(b) holds for all positive integers a and b, even when they are not coprime.
LU decompositionIn numerical analysis and linear algebra, lower–upper (LU) decomposition or factorization factors a matrix as the product of a lower triangular matrix and an upper triangular matrix (see matrix decomposition). The product sometimes includes a permutation matrix as well. LU decomposition can be viewed as the matrix form of Gaussian elimination. Computers usually solve square systems of linear equations using LU decomposition, and it is also a key step when inverting a matrix or computing the determinant of a matrix.
Multiplicative inverseIn mathematics, a multiplicative inverse or reciprocal for a number x, denoted by 1/x or x−1, is a number which when multiplied by x yields the multiplicative identity, 1. The multiplicative inverse of a fraction a/b is b/a. For the multiplicative inverse of a real number, divide 1 by the number. For example, the reciprocal of 5 is one fifth (1/5 or 0.2), and the reciprocal of 0.25 is 1 divided by 0.25, or 4. The reciprocal function, the function f(x) that maps x to 1/x, is one of the simplest examples of a function which is its own inverse (an involution).
Cholesky decompositionIn linear algebra, the Cholesky decomposition or Cholesky factorization (pronounced ʃəˈlɛski ) is a decomposition of a Hermitian, positive-definite matrix into the product of a lower triangular matrix and its conjugate transpose, which is useful for efficient numerical solutions, e.g., Monte Carlo simulations. It was discovered by André-Louis Cholesky for real matrices, and posthumously published in 1924. When it is applicable, the Cholesky decomposition is roughly twice as efficient as the LU decomposition for solving systems of linear equations.
Completely multiplicative functionIn number theory, functions of positive integers which respect products are important and are called completely multiplicative functions or totally multiplicative functions. A weaker condition is also important, respecting only products of coprime numbers, and such functions are called multiplicative functions. Outside of number theory, the term "multiplicative function" is often taken to be synonymous with "completely multiplicative function" as defined in this article.
Polar decompositionIn mathematics, the polar decomposition of a square real or complex matrix is a factorization of the form , where is a unitary matrix and is a positive semi-definite Hermitian matrix ( is an orthogonal matrix and is a positive semi-definite symmetric matrix in the real case), both square and of the same size. Intuitively, if a real matrix is interpreted as a linear transformation of -dimensional space , the polar decomposition separates it into a rotation or reflection of , and a scaling of the space along a set of orthogonal axes.
Hash functionA hash function is any function that can be used to map data of arbitrary size to fixed-size values, though there are some hash functions that support variable length output. The values returned by a hash function are called hash values, hash codes, digests, or simply hashes. The values are usually used to index a fixed-size table called a hash table. Use of a hash function to index a hash table is called hashing or scatter storage addressing.
Arithmetic functionIn number theory, an arithmetic, arithmetical, or number-theoretic function is for most authors any function f(n) whose domain is the positive integers and whose range is a subset of the complex numbers. Hardy & Wright include in their definition the requirement that an arithmetical function "expresses some arithmetical property of n". An example of an arithmetic function is the divisor function whose value at a positive integer n is equal to the number of divisors of n.
Randomness testA randomness test (or test for randomness), in data evaluation, is a test used to analyze the distribution of a set of data to see whether it can be described as random (patternless). In stochastic modeling, as in some computer simulations, the hoped-for randomness of potential input data can be verified, by a formal test for randomness, to show that the data are valid for use in simulation runs. In some cases, data reveals an obvious non-random pattern, as with so-called "runs in the data" (such as expecting random 0–9 but finding "4 3 2 1 0 4 3 2 1.