Concept

# LU decomposition

Summary
In numerical analysis and linear algebra, lower–upper (LU) decomposition or factorization factors a matrix as the product of a lower triangular matrix and an upper triangular matrix (see matrix decomposition). The product sometimes includes a permutation matrix as well. LU decomposition can be viewed as the matrix form of Gaussian elimination. Computers usually solve square systems of linear equations using LU decomposition, and it is also a key step when inverting a matrix or computing the determinant of a matrix. The LU decomposition was introduced by the Polish astronomer Tadeusz Banachiewicz in 1938. To quote: "It appears that Gauss and Doolittle applied the method [of elimination] only to symmetric equations. More recent authors, for example, Aitken, Banachiewicz, Dwyer, and Crout ... have emphasized the use of the method, or variations of it, in connection with non-symmetric problems ... Banachiewicz ... saw the point ... that the basic problem is really one of matrix factorization, or “decomposition” as he called it." It's also referred to as LR decomposition (factors into left and right triangular matrices). Let A be a square matrix. An LU factorization refers to the factorization of A, with proper row and/or column orderings or permutations, into two factors – a lower triangular matrix L and an upper triangular matrix U: In the lower triangular matrix all elements above the diagonal are zero, in the upper triangular matrix, all the elements below the diagonal are zero. For example, for a 3 × 3 matrix A, its LU decomposition looks like this: Without a proper ordering or permutations in the matrix, the factorization may fail to materialize. For example, it is easy to verify (by expanding the matrix multiplication) that . If , then at least one of and has to be zero, which implies that either L or U is singular. This is impossible if A is nonsingular (invertible). This is a procedural problem. It can be removed by simply reordering the rows of A so that the first element of the permuted matrix is nonzero.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.