Scalable analysis of linear networked systems via chordal decomposition
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Graph machine learning offers a powerful framework with natural applications in scientific fields such as chemistry, biology and material sciences. By representing data as a graph, we encode the prior knowledge that the data is composed of a set of entitie ...
This work presents a graph neural network (GNN) framework for solving the maximum independent set (MIS) problem, inspired by dynamic programming (DP). Specifically, given a graph, we propose a DP-like recursive algorithm based on GNNs that firstly construc ...
Various forms of real-world data, such as social, financial, and biological networks, can berepresented using graphs. An efficient method of analysing this type of data is to extractsubgraph patterns, such as cliques, cycles, and motifs, from graphs. For i ...
When can a unimodular random planar graph be drawn in the Euclidean or the hyperbolic plane in a way that the distribution of the random drawing is isometry-invariant? This question was answered for one-ended unimodular graphs in Benjamini and Timar, using ...
Network alignment is the task of identifying topologically and semantically similar nodes across (two) different networks. It plays an important role in various applications ranging from social network analysis to bioinformatic network interactions. Howeve ...
Information retrieval (IR) systems such as search engines are important for people to find what they need among the tremendous amount of data available in their organization or on the Internet. These IR systems enable users to search in a large data collec ...
Consider the family of bounded degree graphs in any minor-closed family (such as planar graphs). Let d be the degree bound and n be the number of vertices of such a graph. Graphs in these classes have hyperfinite decompositions, where, one removes a small ...
Graphs offer a simple yet meaningful representation of relationships between data. Thisrepresentation is often used in machine learning algorithms in order to incorporate structuralor geometric information about data. However, it can also be used in an inv ...
Goods can exhibit positive externalities impacting decisions of customers in social networks. Suppliers can integrate these externalities in their pricing strategies to increase their revenue. Besides optimizing the prize, suppliers also have to consider t ...
Maximal subgraph mining is increasingly important in various domains, including bioinformatics, genomics, and chemistry, as it helps identify common characteristics among a set of graphs and enables their classification into different categories. Existing ...