**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Selling robustness margins: A framework for optimizing reserve capacities for linear systems

Abstract

This paper proposes a method for solving robust optimal control problems with modulated uncertainty sets. We consider constrained uncertain linear systems and interpret the uncertainty sets as “robustness margins” or “reserve capacities”. In particular, given a certain reward for offering such a reserve capacity, we address the problem of determining the optimal size and shape of the uncertainty set, i.e. how much reserve capacity our system should offer. By assuming polyhedral constraints, restricting the class of the uncertainty sets and using affine decision rules, we formulate a convex program to solve this problem. We discuss several specific families of uncertainty sets, whose respective constraints can be reformulated as linear constraints, second-order cone constraints, or linear matrix inequalities. A numerical example demonstrates our approach.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (5)

Uncertainty

Uncertainty refers to epistemic situations involving imperfect or unknown information. It applies to predictions of future events, to physical measurements that are already made, or to the unknown. Uncertainty arises in partially observable or stochastic environments, as well as due to ignorance, indolence, or both. It arises in any number of fields, including insurance, philosophy, physics, statistics, economics, finance, medicine, psychology, sociology, engineering, metrology, meteorology, ecology and information science.

Linear programming

Linear programming (LP), also called linear optimization, is a method to achieve the best outcome (such as maximum profit or lowest cost) in a mathematical model whose requirements are represented by linear relationships. Linear programming is a special case of mathematical programming (also known as mathematical optimization). More formally, linear programming is a technique for the optimization of a linear objective function, subject to linear equality and linear inequality constraints.

Linear matrix inequality

In convex optimization, a linear matrix inequality (LMI) is an expression of the form where is a real vector, are symmetric matrices , is a generalized inequality meaning is a positive semidefinite matrix belonging to the positive semidefinite cone in the subspace of symmetric matrices . This linear matrix inequality specifies a convex constraint on y. There are efficient numerical methods to determine whether an LMI is feasible (e.g., whether there exists a vector y such that LMI(y) ≥ 0), or to solve a convex optimization problem with LMI constraints.