**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Self-field and geometry effects in transport current applications of multifilamentary Bi-2223/Ag conductors

Abstract

This paper describes quantitatively the influence of the self-field and the cross-sectional geometry on the effective critical current and the ac losses in transport current applications of non-twisted multifilamentary Bi-2223/Ag conductors. The results are obtained with finite element method simulations. The numerical implementation includes an anisotropic model for the dependence of the critical current density Jc and the power index n on the local parallel and perpendicular magnetic field components. The relation is given between the intrinsic critical current density and the effective critical current for different multifilamentary conductors. Shown are examples of the current and magnetic flux density distributions in order to demonstrate their effect on the ac losses in self-field

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (3)

Finite element method

The finite element method (FEM) is a popular method for numerically solving differential equations arising in engineering and mathematical modeling. Typical problem areas of interest include the traditional fields of structural analysis, heat transfer, fluid flow, mass transport, and electromagnetic potential. The FEM is a general numerical method for solving partial differential equations in two or three space variables (i.e., some boundary value problems).

Magnetic field

A magnetic field is a vector field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to the magnetic field. A permanent magnet's magnetic field pulls on ferromagnetic materials such as iron, and attracts or repels other magnets.

Electric current

An electric current is a flow of charged particles, such as electrons or ions, moving through an electrical conductor or space. It is defined as the net rate of flow of electric charge through a surface. The moving particles are called charge carriers, which may be one of several types of particles, depending on the conductor. In electric circuits the charge carriers are often electrons moving through a wire. In semiconductors they can be electrons or holes.