Figlearn: Filter And Graph Learning Using Optimal Transport
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We examine the connection of two graph parameters, the size of a minimum feedback arcs set and the acyclic disconnection. A feedback arc set of a directed graph is a subset of arcs such that after deletion the graph becomes acyclic. The acyclic disconnecti ...
Graph learning is often a necessary step in processing or representing structured data, when the underlying graph is not given explicitly. Graph learning is generally performed centrally with a full knowledge of the graph signals, namely the data that live ...
In the domains of machine learning, data science and signal processing, graph or network data, is becoming increasingly popular. It represents a large portion of the data in computer, transportation systems, energy networks, social, biological, and other s ...
We study in this thesis the asymptotic behavior of optimal paths on a random graph model, the configuration model, for which we assign continuous random positive weights on its edges.
We start by describing the asymptotic behavior of the diameter and the f ...
We consider the problem of learning implicit neural representations (INRs) for signals on non-Euclidean domains. In the Euclidean case, INRs are trained on a discrete sampling of a signal over a regular lattice. Here, we assume that the continuous signal e ...
The articles in this special section focus on graph signal processing. Generically, the networks that sustain our societies can be understood as complex systems formed by multiple nodes, where global network behavior arises from local interactions between ...
The field of computational topology has developed many powerful tools to describe the shape of data, offering an alternative point of view from classical statistics. This results in a variety of complex structures that are not always directly amenable for ...
Graphs offer a simple yet meaningful representation of relationships between data. Thisrepresentation is often used in machine learning algorithms in order to incorporate structuralor geometric information about data. However, it can also be used in an inv ...
Graph learning methods have recently been receiving increasing interest as means to infer structure in datasets. Most of the recent approaches focus on different relationships between a graph and data sample distributions, mostly in settings where all avai ...
Joint localization of graph signals in vertex and spectral domain is achieved in Slepian vectors calculated by either maximizing energy concentration (mu) or minimizing modified embedded distance (xi) in the subgraph of interest. On the other hand, graph L ...