Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
A common assumption in the social learning literature is that agents exchange information in an unselfish manner. In this work, we consider the scenario where a subset of agents aims at driving the network beliefs to the wrong hypothesis. The adversaries are unaware of the true hypothesis. However, they will "blend in" by behaving similarly to the other agents and will manipulate the likelihood functions used in the belief update process to launch inferential attacks. We will characterize the conditions under which the network is misled. Then, we will explain that it is possible for such attacks to succeed by showing that strategies exist that can be adopted by the malicious agents for this purpose. We examine both situations in which the agents have minimal or no information about the network model.
Ali H. Sayed, Virginia Bordignon
Ali H. Sayed, Mert Kayaalp, Virginia Bordignon