Types of artificial neural networksThere are many types of artificial neural networks (ANN). Artificial neural networks are computational models inspired by biological neural networks, and are used to approximate functions that are generally unknown. Particularly, they are inspired by the behaviour of neurons and the electrical signals they convey between input (such as from the eyes or nerve endings in the hand), processing, and output from the brain (such as reacting to light, touch, or heat). The way neurons semantically communicate is an area of ongoing research.
Artificial neural networkArtificial neural networks (ANNs, also shortened to neural networks (NNs) or neural nets) are a branch of machine learning models that are built using principles of neuronal organization discovered by connectionism in the biological neural networks constituting animal brains. An ANN is based on a collection of connected units or nodes called artificial neurons, which loosely model the neurons in a biological brain. Each connection, like the synapses in a biological brain, can transmit a signal to other neurons.
Vanishing gradient problemIn machine learning, the vanishing gradient problem is encountered when training artificial neural networks with gradient-based learning methods and backpropagation. In such methods, during each iteration of training each of the neural networks weights receives an update proportional to the partial derivative of the error function with respect to the current weight. The problem is that in some cases, the gradient will be vanishingly small, effectively preventing the weight from changing its value.
BackpropagationAs a machine-learning algorithm, backpropagation performs a backward pass to adjust the model's parameters, aiming to minimize the mean squared error (MSE). In a single-layered network, backpropagation uses the following steps: Traverse through the network from the input to the output by computing the hidden layers' output and the output layer. (the feedforward step) In the output layer, calculate the derivative of the cost function with respect to the input and the hidden layers.
Stochastic gradient descentStochastic gradient descent (often abbreviated SGD) is an iterative method for optimizing an objective function with suitable smoothness properties (e.g. differentiable or subdifferentiable). It can be regarded as a stochastic approximation of gradient descent optimization, since it replaces the actual gradient (calculated from the entire data set) by an estimate thereof (calculated from a randomly selected subset of the data).
Feedforward neural networkA feedforward neural network (FNN) is one of the two broad types of artificial neural network, characterized by direction of the flow of information between its layers. Its flow is uni-directional, meaning that the information in the model flows in only one direction—forward—from the input nodes, through the hidden nodes (if any) and to the output nodes, without any cycles or loops, in contrast to recurrent neural networks, which have a bi-directional flow.
Activation functionActivation function of a node in an artificial neural network is a function that calculates the output of the node (based on its inputs and the weights on individual inputs). Nontrivial problems can be solved only using a nonlinear activation function. Modern activation functions include the smooth version of the ReLU, the GELU, which was used in the 2018 BERT model, the logistic (sigmoid) function used in the 2012 speech recognition model developed by Hinton et al, the ReLU used in the 2012 AlexNet computer vision model and in the 2015 ResNet model.
Recurrent neural networkA recurrent neural network (RNN) is one of the two broad types of artificial neural network, characterized by direction of the flow of information between its layers. In contrast to uni-directional feedforward neural network, it is a bi-directional artificial neural network, meaning that it allows the output from some nodes to affect subsequent input to the same nodes. Their ability to use internal state (memory) to process arbitrary sequences of inputs makes them applicable to tasks such as unsegmented, connected handwriting recognition or speech recognition.
Rectifier (neural networks)In the context of artificial neural networks, the rectifier or ReLU (rectified linear unit) activation function is an activation function defined as the positive part of its argument: where x is the input to a neuron. This is also known as a ramp function and is analogous to half-wave rectification in electrical engineering. This activation function was introduced by Kunihiko Fukushima in 1969 in the context of visual feature extraction in hierarchical neural networks.
Neural network softwareNeural network software is used to simulate, research, develop, and apply artificial neural networks, software concepts adapted from biological neural networks, and in some cases, a wider array of adaptive systems such as artificial intelligence and machine learning. Neural network simulators are software applications that are used to simulate the behavior of artificial or biological neural networks. They focus on one or a limited number of specific types of neural networks.