Predictably Unequal? The Effects of Machine Learning on Credit Markets
Related publications (32)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Background Coercion in psychiatry is a controversial issue. Identifying its predictors and their interaction using traditional statistical methods is difficult, given the large number of variables involved. The purpose of this study was to use machine-lear ...
Machine learning (ML) applications are ubiquitous. They run in different environments such as datacenters, the cloud, and even on edge devices. Despite where they run, distributing ML training seems the only way to attain scalable, high-quality learning. B ...
EPFL2022
,
%0 Conference Paper %T Bayesian Differential Privacy for Machine Learning %A Aleksei Triastcyn %A Boi Faltings %B Proceedings of the 37th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2020 %E Hal Daumé III %E A ...
Discrete Choice Models (DCMs) have a distinct advantage over Machine Learning (ML) classification algorithms, in that they employ a highly interpretable linear structure. However, a key drawback of DCMs compared to ML is the need to specify the utility fun ...
2019
Refineries execute a series of interlinked processes, where the product of one unit serves as the input to another process. Potential failures within these processes affect the quality of the end products, operational efficiency, and revenue of the entire ...
High levels of cognitive workload decreases human's performance and leads to failures with catastrophic outcomes in risky missions. Today, reliable cognitive workload detection presents a common major challenge, since the workload is not directly observabl ...
Interatomic potentials are essential for studying fundamental mechanisms of deformation and failure in metals and alloys because the relevant defects (dislocations, cracks, etc.) are far above the scales accessible to first-principles studies. Existing pot ...
Superagers are defined as older adults who have youthful memory performance comparable to that of middle-aged adults. Classifying superagers based on the brain connectome using machine learning modeling can provide important insights on the physiology unde ...
The temperature and pressure dependence of structural phase transitions determine the structure-functionality relationships in many technologically important materials. Harmonic Hamiltonians have proven successful in predicting the vibrational properties o ...
Increasingly, the ubiquity of satellite imagery has made the data analysis and machine learning of large geographical datasets one of the building blocks of visuospatial intelligence. It is the key to discover current (and predict future) cultural, social, ...