Publication

FIB-milled plasmonic nanoapertures allow for long trapping times of individual proteins

Wayne Yang Wen Wei
2021
Journal paper
Abstract

We have developed a fabrication methodology for label-free optical trapping of individual nanobeads and proteins in inverted-bowtie-shaped plasmonic gold nanopores. Arrays of these nanoapertures can be reliably produced using focused ion beam (FIB) milling with gap sizes of 10-20 nm, single-nanometer variation, and with a remarkeie stability that allows for repeated use. We employ an optical readout where the presence of the protein entering the trap is marked by an increase in the transmission of light through the nanoaperture from the shift of the plasmonic resonance. In addition, the optical trapping force of the plasmonic nanopores allows 20-nm polystyrene beads and proteins, such as beta-amylase and Heat Shock Protein (HSP90), to be trapped for very long times (approximately minutes). On demand, we can release the trapped molecule for another protein to be interrogated. Our work opens up new routes to acquire information on the conformation and dynamics of individual proteins.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (31)
Optical tweezers
Optical tweezers (originally called single-beam gradient force trap) are scientific instruments that use a highly focused laser beam to hold and move microscopic and sub-microscopic objects like atoms, nanoparticles and droplets, in a manner similar to tweezers. If the object is held in air or vacuum without additional support, it can be called optical levitation. The laser light provides an attractive or repulsive force (typically on the order of piconewtons), depending on the relative refractive index between particle and surrounding medium.
Magneto-optical trap
In condensed matter physics, a magneto-optical trap (MOT) is an apparatus which uses laser cooling and a spatially-varying magnetic field to create a trap which can produce samples of cold, neutral atoms. Temperatures achieved in a MOT can be as low as several microkelvin, depending on the atomic species, which is two or three times below the photon recoil limit. However, for atoms with an unresolved hyperfine structure, such as , the temperature achieved in a MOT will be higher than the Doppler cooling limit.
Protein
Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, responding to stimuli, providing structure to cells and organisms, and transporting molecules from one location to another. Proteins differ from one another primarily in their sequence of amino acids, which is dictated by the nucleotide sequence of their genes, and which usually results in protein folding into a specific 3D structure that determines its activity.
Show more
Related publications (33)

Towards automating de novo protein design for novel functionalities: controlling protein folds and protein-protein interactions

Zander Harteveld

The sheer size of the protein sequence space is massive: a protein of 100 residues can have 20^100 possible sequence combinations; and knowing that this exceeds the number of atoms in the universe, the chance of randomly discovering a stable new sequence w ...
EPFL2022

Amplitude and phase reconstruction for Low-Energy Electron Holography of individual proteins

Hannah Julia Ochner

Single-molecule imaging methods are of importance in structural biology, and specifically in the imaging of proteins, since they can elucidate conformational variability and structural changes that might be lost in imaging methods relying on averaging proc ...
EPFL2022

Assessment of transferable forcefields for protein simulations attests improved description of disordered states and secondary structure propensities, and hints at multi-protein systems as the next challenge for optimization

Matteo Dal Peraro, Luciano Andres Abriata

Continuous assessment of transferable forcefields for molecular simulations is essential to identify their weaknesses and direct improvement efforts. The latest efforts focused on better describing disordered proteins while retaining proper description of ...
2021
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.