Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Brain-computer interfaces (BCIs) are neural prosthetics that enable closed-loop electrophysiology procedures. These devices are currently used in fundamental neurophysiology research, and they are moving toward clinical viability for neural rehabilitation. State-of-the-art BCI experiments have often been performed using tethered (wired) setups in controlled laboratory settings. Wired tethers simplify power and data interfaces but restrict the duration and types of experiments that are possible, particularly for the study of sensorimotor pathways in freely behaving animals. To eliminate tethers, there is significant ongoing research to develop fully wireless BCIs having wireless uplink of broadband neural recordings and wireless recharging for long-duration deployment, but significant challenges persist. BCIs must deliver complex functionality while complying with tightly coupled constraints in size, weight, power, noise, and biocompatibility. In this article, we provide an overview of recent progress in wireless BCIs and a detailed presentation of two emerging technologies that are advancing the state of the art: ultralow-power wireless backscatter communication and adaptive inductive resonant (AIR) wireless power transfer (WPT).