Green-Chemistry-Inspired Synthesis of Cyclobutane-Based Hole-Selective Materials for Highly Efficient Perovskite Solar Cells and Modules
Related publications (45)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Dye-sensitized solar cells (DSCs) constitute a novel class of hybrid organic-inorganic solar cells. At the heart of the device is a mesoporous film of titanium dioxide (TiO2) nanoparticles, which are coated with a monolayer of dye sensitive to the visible ...
Mesoscopic sensitized solar cells are one of the most promising third-generation photovoltaic technologies. Dye-sensitized solar cells (DSCs), imitating the photosynthesis of green plants, were the first photovoltaic devices to utilize a mesoscopic heteroj ...
The surface, interfaces and grain boundaries of a halide perovskite film carry critical tasks in achieving as well as maintaining high solar cell performance due to the inherently defective nature across their regime. Passivating materials and felicitous p ...
This short communication highlights our latest results towards high-efficiency microcrystalline silicon single-junction solar cells. By combining adequate cell design with high-quality material, a new world record efficiency was achieved for single-junctio ...
Hydrogenated microcrystalline silicon prepared at low temperatures by the glow discharge technique is examined here with respect to its role as a new thin-film photovoltaic absorber material. XRD and TEM characterizations reveal that microcrystalline silic ...