Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
With the purpose of reducing the heating energy in buildings, it is common practice to install energy-efficient windows to increase the thermal insulation of a façade. These insulating glass units (IGIJ) include a thin silver coating acting as an infrared mirror which reduces the thermal losses that occur through radiation, but at the same time reflects the microwaves for mobile communication. To address this drawback, a specific laser treatment is performed on the silver coating which strongly improves the transmission of microwaves through the window. In this study, the attenuation of microwaves signal was analyzed inside the SolAce unit in the "NEST" research building at the Swiss Federal Laboratories for Materials Science and Technology (EMPA) in Dübendorf. Two configurations (with and without laser-treated glazing) were carried out by interchanging two hinged windows. The results showed a significant improvement in signal strength in the configuration with laser-treated IGUs. A transmission loss contour plot of the SolAce unit showed a highly directional propagation of the wave which suggests that more than two windows should be treated to achieve better mobile communication in the entire unit. The novel patterned coating is thus especially valuable in the building sector to increase the microwave signal for mobile communication. To the best of our knowledge, this is the first implementation and testing of laser-treated coating for energy-efficient glazing in the building sector.
Josef Andreas Schuler, Jérémy Jacques Antonin Fleury