Self-Supervised Pretraining and Controlled Augmentation Improve Rare Wildlife Recognition in UAV Images
Related publications (39)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Recent advancements in deep learning have revolutionized 3D computer vision, enabling the extraction of intricate 3D information from 2D images and video sequences. This thesis explores the application of deep learning in three crucial challenges of 3D com ...
The success of self-supervised learning in computer vision and natural language processing has motivated pretraining methods on tabular data. However, most existing tabular self-supervised learning models fail to leverage information across multiple data t ...
The recent developments of deep learning cover a wide variety of tasks such as image classification, text translation, playing go, and folding proteins.All these successful methods depend on a gradient-based learning algorithm to train a model on massive a ...
Natural language processing and other artificial intelligence fields have witnessed impressive progress over the past decade. Although some of this progress is due to algorithmic advances in deep learning, the majority has arguably been enabled by scaling ...
Author summaryIn recent years, the application of deep learning represented a breakthrough in the mass spectrometry (MS) field by improving the assignment of the correct sequence of amino acids from observable MS spectra without prior knowledge, also known ...
Metal-organic frameworks (MOFs) are a class of crystalline porous materials that exhibit a vast chemical space owing to their tunable molecular building blocks with diverse topologies. An unlimited number of MOFs can, in principle, be synthesized. Machine ...
Training deep neural network based Automatic Speech Recognition (ASR) models often requires thousands of hours of transcribed data, limiting their use to only a few languages. Moreover, current state-of-the-art acoustic models are based on the Transformer ...
In this paper, we propose and compare personalized models for Productive Engagement (PE) recognition. PE is defined as the level of engagement that maximizes learning. Previously, in the context of robot-mediated collaborative learning, a framework of prod ...
In this work, we propose an approach to aid in mapping small settlements, which are often misclassified by models trained on a large-scale context (global or regional). We leverage pre-trained land cover models and few-shot learning to enhance the detectio ...
Flood prediction in ungauged catchments is usually conducted by hydrological models that are parameterized based on nearby and similar gauged catchments. As an alternative to this process-based modelling, deep learning (DL) models have demonstrated their a ...