Localisation of front side passivating contacts for direct metallisation of high-efficiency c-Si solar cells
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Increasing the efficiency of crystalline silicon (c-Si) solar cells requires the reduction of both bulk and interface recombination. Even if bulk recombination is almost suppressed, the symmetry of the crystal lattice is disturbed at the surface and hence, ...
Basic limitations of single-junction and tandem p-n and p-i-n diodes are established from thermodynamical considerations on radiative recombination and semi-empirical considerations on the classical diode equations. These limits are compared to actual valu ...
Crystalline silicon wafer (c-Si) can be extremely well passivated by plasma enhanced chemical vapor deposited (PECVD) amorphous silicon (a-Si:H) films. As a result, on flat substrates, solar cells with very high open circuit voltage are readily obtained. O ...
Ieee Service Center, 445 Hoes Lane, Po Box 1331, Piscataway, Nj 08855-1331 Usa2009
This thesis investigates amorphous (a-Si:H) and microcrystalline (μc-Si:H) solar cells deposited by very high frequency plasma enhanced chemical vapor deposition (VHF-PECVD) in the n-i-p or substrate configuration. It focuses on processes that allow the us ...
We present tandem thin film silicon solar cells in n-i-p configuration with 12% initial efficiency. The stabilized efficiency of these devices is 10%. The result has become possible by the combination of a microcrystalline bottom cell with high current den ...
Hydrogenated microcrystalline silicon prepared at low temperatures by the glow discharge technique is examined here with respect to its role as a new thin-film photovoltaic absorber material. XRD and TEM characterizations reveal that microcrystalline silic ...