Publication

Modeling Snow Saltation: The Effect of Grain Size and Interparticle Cohesion

Abstract

The surface of the Earth is snow-covered at least seasonally over large areas. This snow surface is highly dynamic, particularly under the influence of strong winds. The motion of snow particles driven by the wind not only changes the snow cover but has important consequences for the atmosphere in that it adds mass and moisture and extracts heat. Large scale meteorological and climatological models neglect these surface dynamics or produce conflicting results from too simplified process representation. With recent progress in the detailed understanding of the saltation process, in particular with respect to sand saltation, and the advancement of numerical models, we can systematically investigate the influence of snow properties on saltation. This contribution uses a Large Eddy Simulation model with full surface particle dynamics to investigate how snow cohesion and size distribution influence saltation dynamics and in particular the total mass flux. The model reproduces some known characteristics of the saltation system such as a focus point or a constant near surface particle speed. An interesting result is that cohesion and grain size heterogeneity can increase the overall saltation mass flux at high friction velocities. Moreover, some simplified models agree reasonably well with the simulations for given bed characteristics, while others clearly do not. These results are valid for continuous saltation while intermittent saltation, which often occurs in nature, needs further investigation. In order to successfully parameterize saltation in large scale models, progress must be made in correctly representing snow surface properties in these models, in particular cohesion.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (32)
Snow
Snow comprises individual ice crystals that grow while suspended in the atmosphere—usually within clouds—and then fall, accumulating on the ground where they undergo further changes. It consists of frozen crystalline water throughout its life cycle, starting when, under suitable conditions, the ice crystals form in the atmosphere, increase to millimeter size, precipitate and accumulate on surfaces, then metamorphose in place, and ultimately melt, slide or sublimate away.
Beaufort scale
The Beaufort scale ˈboʊfərt is an empirical measure that relates wind speed to observed conditions at sea or on land. Its full name is the Beaufort wind force scale. The scale was devised in 1805 by the Irish hydrographer Francis Beaufort (later Rear Admiral), a Royal Navy officer, while serving on .
Meteorology
Meteorology is a branch of the atmospheric sciences (which include atmospheric chemistry and physics) with a major focus on weather forecasting. The study of meteorology dates back millennia, though significant progress in meteorology did not begin until the 18th century. The 19th century saw modest progress in the field after weather observation networks were formed across broad regions. Prior attempts at prediction of weather depended on historical data.
Show more
Related publications (35)

Snowfall deposition in mountainous terrain: a statistical downscaling scheme from high-resolution model data on simulated topographies

Michael Lehning

One of the primary causes of non-uniform snowfall deposition on the ground in mountainous regions is the preferential deposition of snow, which results from the interaction of near-surface winds with topography and snow particles. However, producing high-r ...
Lausanne2024

Understanding snow saltation parameterizations: lessons from theory, experiments and numerical simulations

Michael Lehning, Daniela Brito Melo, Armin Sigmund

Drifting and blowing snow are important features in polar and high mountain regions. They control the surface mass balance in windy conditions and influence sublimation of snow and ice surfaces. Despite their importance, model representations in weather an ...
2024

Turbulence and Heat exchange in the Near-Surface Boundary Layer over Patchy Snow

Michael Haugeneder

The atmospheric layer adjacent to the earth's surface is of crucial importance for weather models due to the exchange of energy between the surface and the atmosphere. This exchange is dependent on the various surface properties and influences the state of ...
EPFL2024
Show more
Related MOOCs (7)
SES Swiss-Energyscope
La transition énergique suisse / Energiewende in der Schweiz
Fluid Mechanics
Ce cours de base est composé des sept premiers modules communs à deux cours bachelor, donnés à l’EPFL en génie mécanique et génie civil.
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Show more