Summary
The Beaufort scale ˈboʊfərt is an empirical measure that relates wind speed to observed conditions at sea or on land. Its full name is the Beaufort wind force scale. The scale was devised in 1805 by the Irish hydrographer Francis Beaufort (later Rear Admiral), a Royal Navy officer, while serving on . The scale that carries Beaufort's name had a long and complex evolution from the previous work of others (including Daniel Defoe the century before) to when Beaufort was Hydrographer of the Navy in the 1830s, when it was adopted officially and first used during the voyage of HMS Beagle under Captain Robert FitzRoy, who was later to set up the first Meteorological Office (Met Office) in Britain giving regular weather forecasts. In the 18th century, naval officers made regular weather observations, but there was no standard scale and so they could be very subjective – one man's "stiff breeze" might be another's "soft breeze". Beaufort succeeded in standardising the scale. The initial scale of 13 classes (zero to 12) did not reference wind speed numbers but related qualitative wind conditions to effects on the sails of a frigate, then the main ship of the Royal Navy, from "just sufficient to give steerage" to "that which no canvas sails could withstand". The scale was made a standard for ship's log entries on Royal Navy vessels in the late 1830s and was adapted to non-naval use from the 1850s, with scale numbers corresponding to cup anemometer rotations. In 1853, the Beaufort scale was accepted as generally applicable at the First International Meteorological Conference in Brussels. In 1916, to accommodate the growth of steam power, the descriptions were changed to how the sea, not the sails, behaved and extended to land observations. Rotations to scale numbers were standardised only in 1923. George Simpson, CBE (later Sir George Simpson), director of the UK Meteorological Office, was responsible for this and for the addition of the land-based descriptors. The measures were slightly altered some decades later to improve its utility for meteorologists.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (41)

Natural slicks on Lake Geneva: From small-scale effects to large-scale formation and distribution

Mehrshad Foroughan

Low wind speeds (< 4 m/s) are ubiquitous in many water bodies, yet the physical processes occurring at the air-water interface in this range are poorly understood. A notable example is smooth patches on the water surface, known as natural slicks, formed wh ...
EPFL2023

Snow Loss Into Leads in Arctic Sea Ice: Minimal in Typical Wintertime Conditions, but High During a Warm and Windy Snowfall Event

Julia Schmale, Marc Schneebeli Zeugin, Markus Frey

The amount of snow on Arctic sea ice impacts the ice mass budget. Wind redistribution of snow into open water in leads is hypothesized to cause significant wintertime snow loss. However, there are no direct measurements of snow loss into Arctic leads. We m ...
2023
Show more