Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
In fall 2019, a new set of climate change scenarios has been released for Switzerland, the CH2018 dataset (www.climate-scenarios.ch). The data areprovided at daily resolution. We produced from the CH2018 dataset a new set of climate change scenarios temporally downscaled at hourly resolution. In addition, we extended this dataset integrating the meteorological stations from the Inter-Cantonal Measurement and Information System (IMIS) network, an alpine network of automatic meteorological stations operated by the WSL Institute for Snow and Avalanche Research SLF.The extension to the IMIS network is obtained using a Quantile Mapping approach in order to perform a spatial transfer of the CH2018 scenarios from the location of the MeteoSwiss stations to the location of the IMIS stations. The temporal downscaling is performed using an enhanced Delta-Change approach. This approach is based on objective criteria for assessing the quality of the determined delta and downscaled time series. In addition, this method also fixes a flaw of common quantile mapping methods (such as used in the CH2018 dataset for spatial downscaling) related to the decrease of correlation between different variables. The idea behind the delta change approach is to take the main seasonal signal (and mean) from climate change scenarios at daily resolution and to map it to a historical time series at hourly resolution in order to modify the historical time series. The obtained time series exhibit the same seasonal signal as the original climate change time series, while it keeps the sub-daily cycle from the historical time series.The applied methods (Quantile Mapping and Delta-Change) have limitations in correctly representing statistically extreme events and changes in the frequency of discontinuous events such as precipitation. In addition, the sub-daily cycle in the data is inherited from the historical time series, so there is no information of the climate change signal in this sub-daily cycle. A careful reading of the paper accompanying the dataset is necessary to understand the limitations and scope of application of this new dataset.This material is distributed under CC BY 4.0 license (https://creativecommons.org/licenses/by/4.0/legalcode).
Michael Lehning, Wolf Hendrik Huwald, Adrien Michel, Bettina Schaefli, Nander Wever