Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In this paper we give a new proof of the ELSV formula. First, we refine an argument of Okounkov and Pandharipande in order to prove (quasi-)polynomiality of Hurwitz numbers without using the ELSV formula (the only way to do that before used the ELSV formul ...
We address adaptive multivariate polynomial approximation by means of the discrete least-squares method with random evaluations, to approximate in the L2 probability sense a smooth function depending on a random variable distributed according to a given pr ...
We consider the problem of sampling at unknown locations. We prove that, in this setting, if we take arbitrarily many samples of a polynomial or real bandlimited signal, it is possible to find another function in the same class, arbitrarily far away from t ...
In this paper we study some generalized versions of a recent result due to Covert, Koh, and Pi (2015). More precisely, we prove that if a subset in a regular variety satisfies vertical bar epsilon vertical bar >> q(d-1/2 + 1/k-1), then Delta(k,F)(epsilon) ...
The large sieve inequalities for algebraic trace functions are considered in this article. A fundamental iterative relation is established by classical Fourier analysis, and l-adic Fourier analysis and multiplicative convolutions of sheaves are also requir ...
We analyse the problem of approximating a multivariate function by discrete least-squares projection on a polynomial space starting from random, noise-free observations. An area of possible application of such technique is Uncertainty Quantification (UQ) f ...
In this project, we study and compare two methods to solve stochastic ordinary differential equations. The first is the Monte Carlo method and the second uses Polynomial Chaos. In the first part, we will solve a stochastic ordinary differential equation by ...
In this paper we propose and analyze a stochastic collocation method for solving the second order wave equation with a random wave speed and subjected to deterministic boundary and initial conditions. The speed is piecewise smooth in the physical space and ...
In Part I we introduced the generalized Wiener rational basis functions, and here in Part II we continue our investigation with numerical experiments. Wiener's generalized basis can utilize the fast Fourier transform for integer values of the decay paramet ...
Formal verification utilizing symbolic computer algebra has demonstrated the ability to formally verify large Galois field arithmetic circuits and basic architectures of integer arithmetic circuits. The technique models the circuit as Gröbner basis polynom ...