On the scale dependence in the dynamics of frictional rupture: Constant fracture energy versus size-dependent breakdown work
Related publications (75)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Thermally driven flows in fractures play a key role in enhancing the heat transfer and fluid mixing across the Earth’s lithosphere. Yet the energy pathways in such confined environments have not been characterised. Building on Letelier et al. (J. Fluid Mec ...
We study numerically the deformation of a dynamic crack propagating through a planar heterogeneous interface. We investigate the evolution of the front shape due to variations of fracture toughness, represented by weak and strong stripes parallel to the ru ...
The goal of this Master thesis project was to design a methodology that helps to analyze a set of indicators that can support the decision-making process, by identifying energy strategies with a temporal horizon 2030-2050 in Cuba. Several sources of data a ...
The need for new forms of energy, and in particular the need for renewable and clean ones, led to develompment of Enanched Geothermal Systems, where the well designed stimulation of a geothermal reservoir is the key parameter for the safe development of th ...
Earthquakes correspond to a sudden release of elastic energy stored during inter-seismic period by tectonic loading around fault. The earthquake energy budget consists of four non-independent terms: the energy release rate (by unit crack length), the fract ...
The loading path the fault experiences is often neglected when evaluating its potential for reactivation and the related seismic risk. However, stress history affects fault zone compaction and dilation, and thus its mechanics. Therefore, in incohesive faul ...
Hydraulic stimulation is an engineering technique whose aim is to enhance the permeability of fractured rock masses at depths ranging from one to five kilometers. It consists in the injection of fluid at sufficiently high pressure in order to shear pre-exi ...
The stress state of the subsurface has been shown to have an influence on a number of key processes. For example, the criticality of the stress state indicates how large stress changes need to be before a fault begins to slip, the mean effective stress con ...
Tectonic faults typically break in a single rupture mode within the range of styles from slow slip to dynamic earthquake failure. However, in increasingly well-documented instances, the same fault segment fails in both slow and fast modes within a short pe ...
The generalized stacking fault energy is a key ingredient to mesoscale models of dislocations. Here we develop an approach to quantify the dependence of generalized stacking fault energies on the degree of chemical disorder in multicomponent alloys. We int ...