Scalar (physics)In physics, scalars (or scalar quantities) are physical quantities that are unaffected by changes to a vector space basis (i.e., a coordinate system transformation). Scalars are often accompanied by units of measurement, as in "10cm". Examples of scalar quantities are mass, distance, charge, volume, time, speed, and the magnitude of physical vectors in general (such as velocity). A change of a vector space basis changes the description of a vector in terms of the basis used but does not change the vector itself, while a scalar has nothing to do with this change.
Transformer (machine learning model)A transformer is a deep learning architecture that relies on the parallel multi-head attention mechanism. The modern transformer was proposed in the 2017 paper titled 'Attention Is All You Need' by Ashish Vaswani et al., Google Brain team. It is notable for requiring less training time than previous recurrent neural architectures, such as long short-term memory (LSTM), and its later variation has been prevalently adopted for training large language models on large (language) datasets, such as the Wikipedia corpus and Common Crawl, by virtue of the parallelized processing of input sequence.
Product (mathematics)In mathematics, a product is the result of multiplication, or an expression that identifies objects (numbers or variables) to be multiplied, called factors. For example, 21 is the product of 3 and 7 (the result of multiplication), and is the product of and (indicating that the two factors should be multiplied together). When one factor is an integer, the product is called a multiple. The order in which real or complex numbers are multiplied has no bearing on the product; this is known as the commutative law of multiplication.
Word-sense inductionIn computational linguistics, word-sense induction (WSI) or discrimination is an open problem of natural language processing, which concerns the automatic identification of the senses of a word (i.e. meanings). Given that the output of word-sense induction is a set of senses for the target word (sense inventory), this task is strictly related to that of word-sense disambiguation (WSD), which relies on a predefined sense inventory and aims to solve the ambiguity of words in context.
Scalar (mathematics)A scalar is an element of a field which is used to define a vector space. In linear algebra, real numbers or generally elements of a field are called scalars and relate to vectors in an associated vector space through the operation of scalar multiplication (defined in the vector space), in which a vector can be multiplied by a scalar in the defined way to produce another vector. Generally speaking, a vector space may be defined by using any field instead of real numbers (such as complex numbers).
Sentence embeddingIn natural language processing, a sentence embedding refers to a numeric representation of a sentence in the form of a vector of real numbers which encodes meaningful semantic information. State of the art embeddings are based on the learned hidden layer representation of dedicated sentence transformer models. BERT pioneered an approach involving the use of a dedicated [CLS] token preprended to the beginning of each sentence inputted into the model; the final hidden state vector of this token encodes information about the sentence and can be fine-tuned for use in sentence classification tasks.
Vector (mathematics and physics)In mathematics and physics, vector is a term that refers colloquially to some quantities that cannot be expressed by a single number (a scalar), or to elements of some vector spaces. Historically, vectors were introduced in geometry and physics (typically in mechanics) for quantities that have both a magnitude and a direction, such as displacements, forces and velocity. Such quantities are represented by geometric vectors in the same way as distances, masses and time are represented by real numbers.
Vector spaceIn mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called vectors, may be added together and multiplied ("scaled") by numbers called scalars. Scalars are often real numbers, but can be complex numbers or, more generally, elements of any field. The operations of vector addition and scalar multiplication must satisfy certain requirements, called vector axioms. The terms real vector space and complex vector space are often used to specify the nature of the scalars: real coordinate space or complex coordinate space.
Semantic similaritySemantic similarity is a metric defined over a set of documents or terms, where the idea of distance between items is based on the likeness of their meaning or semantic content as opposed to lexicographical similarity. These are mathematical tools used to estimate the strength of the semantic relationship between units of language, concepts or instances, through a numerical description obtained according to the comparison of information supporting their meaning or describing their nature.
Positive operator (Hilbert space)In mathematics (specifically linear algebra, operator theory, and functional analysis) as well as physics, a linear operator acting on an inner product space is called positive-semidefinite (or non-negative) if, for every , and , where is the domain of . Positive-semidefinite operators are denoted as . The operator is said to be positive-definite, and written , if for all . In physics (specifically quantum mechanics), such operators represent quantum states, via the density matrix formalism.