Publication

From the line shape of the X(3872) to its structure

Angelo Esposito
2022
Journal paper
Abstract

From a study of the line shape of the X(3872), the LHCb collaboration measures a sizeable negative effective range. This cannot be reconciled with a shallow D (D) over bar* bound state hypothesis. Based on Weinberg's compositeness criterion, together with a theorem by Smorodinsky, it follows that the X has to have a compact hidden charm structure interacting with unbound D (D) over bar* pairs via short-distance color forces. This conclusion is strengthened by the general pattern recently emerging from exotic mesons.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related concepts (17)
Exotic hadron
Exotic hadrons are subatomic particles composed of quarks and gluons, but which – unlike "well-known" hadrons such as protons, neutrons and mesons – consist of more than three valence quarks. By contrast, "ordinary" hadrons contain just two or three quarks. Hadrons with explicit valence gluon content would also be considered exotic. In theory, there is no limit on the number of quarks in a hadron, as long as the hadron's color charge is white, or color-neutral.
Meson
In particle physics, a meson (ˈmiːzɒn,_ˈmɛzɒn) is a type of hadronic subatomic particle composed of an equal number of quarks and antiquarks, usually one of each, bound together by the strong interaction. Because mesons are composed of quark subparticles, they have a meaningful physical size, a diameter of roughly one femtometre (10^−15 m), which is about 0.6 times the size of a proton or neutron. All mesons are unstable, with the longest-lived lasting for only a few tenths of a nanosecond.
Exotic atom
An exotic atom is an otherwise normal atom in which one or more sub-atomic particles have been replaced by other particles of the same charge. For example, electrons may be replaced by other negatively charged particles such as muons (muonic atoms) or pions (pionic atoms). Because these substitute particles are usually unstable, exotic atoms typically have very short lifetimes and no exotic atom observed so far can persist under normal conditions.
Show more
Related publications (33)

Search for the lepton flavour violating decays B0 -> emu and B0s -> emu with LHCb Run 2 data

Sebastian Schulte

A large variety of new physics models suggest that the rates for lepton flavour violating bb-hadron decays may be much higher than predicted in the Standard Model, which leads to a high interest in the search for such decays. This thesis presents the sear ...
EPFL2024

Search for Heavy Neutral Leptons with LHCb

Serhii Cholak

This thesis presents a search for a beyond the Standard Model (SM) heavy neutral lepton (HNL), which does not interact via any of the SM interactions. This hypothetical particle has been proposed by multiple theories as an extension to the SM, and it could ...
EPFL2023
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.