HIERARCHICAL MARKOV CHAIN MONTE CARLO METHODS FOR BAYESIAN INVERSE PROBLEMS
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In this work, we present, analyze, and implement a class of multilevel Markov chain Monte Carlo(ML-MCMC) algorithms based on independent Metropolis--Hastings proposals for Bayesian inverse problems. In this context, the likelihood function involves solving ...
The goal of this thesis is the development and the analysis of numerical methods for problems where the unknown is a curve on a smooth manifold. In particular, the thesis is structured around the three following problems: homotopy continuation, curve inter ...
This work presents a new dynamic modelling approach for calcium looping systems that allows explicit sorbent deactivation and purge/makeup. These are common in plant operations, but often neglected in modelling. This model adopts a Monte Carlo approach, tr ...
In this thesis we explore uncertainty quantification of forward and inverse problems involving differential equations. Differential equations are widely employed for modeling natural and social phenomena, with applications in engineering, chemistry, meteor ...
This thesis focuses on the numerical analysis of partial differential equations (PDEs) with an emphasis on first and second-order fully nonlinear PDEs. The main goal is the design of numerical methods to solve a variety of equations such as orthogonal maps ...
Multiscale problems, such as modelling flows through porous media or predicting the mechanical properties of composite materials, are of great interest in many scientific areas. Analytical models describing these phenomena are rarely available, and one mus ...
In the current work we present two generalizations of the Parallel Tempering algorithm, inspired by the so-called continuous-time Infinite Swapping algorithm. Such a method, found its origins in the molecular dynamics community, and can be understood as th ...
In this work, we present, analyze, and implement a class of Multi-Level Markov chain Monte Carlo (ML-MCMC) algorithms based on independent Metropolis-Hastings proposals for Bayesian inverse problems. In this context, the likelihood function involves solvin ...
In the current work we present two generalizations of the Parallel Tempering algorithm in the context of discrete-timeMarkov chainMonteCarlo methods for Bayesian inverse problems. These generalizations use state-dependent swapping rates, inspired by the so ...
A novel probabilistic numerical method for quantifying the uncertainty induced by the time integration of ordinary differential equations (ODEs) is introduced. Departing from the classical strategy to randomize ODE solvers by adding a random forcing term, ...