Publication

Insights about inductively coupled plasma optical emission spectroscopy interferences of major rare earth elements in complex e-waste feeds

Abstract

The advent of rare earth elements (REEs) with optoelectronic properties has shifted the technology paradigm from digital to a smart and hybrid world. Their substantial uses also resulted in a large piling up of e-waste. Therefore, e-waste is now a lucrative recycling target for the recovery of such critical raw materials. Their recycling from e-waste is often challenged by dilute metal concentration, complex composition, and difficult chemical characterisation. Generally, the characterisation of e-waste involves elemental determination techniques, such as inductively coupled plasma optical emission spectroscopy (ICP-OES) or inductively coupled plasma mass spectrometry (ICP-MS). ICP-OES is attractive for a recycling or research sector because it has a higher matrix tolerance and lower cost than ICP-MS. In this work, the intensity at 445 line positions measured by an ICP-OES instrument was compiled in a 2D diagram to map interferences by 27 prominent lines from 9 REEs. The second diagram shows the impact at 230 neighbouring line positions measured in each of, in total, 17 (i.e., 9 REEs and 8 non-REEs) single-standard solutions in terms of the concentration of the element type affected. The spectral interference correction algorithm proposed here had been developed by us for a recycling process to obtain pure Y, Eu, and Tb from fluorescent powder (FP) in spent lamps. The ICP-OES analysis and spectral interference correction approach presented here can be applied to any element and e-waste type. To underline this, the paper gives examples for elements in dissolved FP and surrogate NdFeB magnet samples.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.