Publication

Healing plasma current ramp-up by nitrogen seeding in the full tungsten environment of WEST

Abstract

Achieving a successful plasma current ramp-up in a full tungsten tokamak can be challenging due to the large core radiation (and resulting low core temperature) that can be faced with this heavy metallic impurity if its relative concentration is too high. Nitrogen injection during the plasma current ramp-up of WEST discharges greatly improves the core temperature and magnetohydrodynamic (MHD) stability. Experimental measurements and integrated simulations with the RAPTOR code, complemented with the QuaLiKiz neural network for computing turbulent transport, allow a detailed understanding of the mechanisms at play. Increased edge radiation during this transient phase is shown to improve confinement properties, driving higher core temperature and better MHD stability. This also leads to increased operation margins with respect to tungsten contamination.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.