Publication

A 1.5D fluid-Monte Carlo model of a hydrogen helicon plasma

Abstract

Helicon plasma sources operating with hydrogen or deuterium might be attractive for fusion applications due to their higher power efficiency compared to inductive radiofrequency plasma sources. In recent years, the resonant antenna ion device (RAID) has been investigating the physics of helicon plasmas and the possibility of employing them to produce negative ions for heating neutral beam injectors (HNBs). Herein, we present a fluid Monte Carlo (MC) model that describes plasma species transport in a typical helicon hydrogen plasma discharge. This work is motivated by an interest in better understanding the basic physics of helicon plasma devices operating in hydrogen and, in particular, the volume production of negative ions. This model is based on the synergy between two separate self-consistent approaches: a plasma fluid model that calculates ion transport and an MC model that determines the neutral and rovibrational density profiles of H-2. By introducing the electron density and the temperature profiles measured by Langmuir probes as model constraints, the densities of ion species (H+, H-2(+), H-3(+), H-) are computed in a 1.5D (dimensional) geometry. The estimate of the negative ion density profile represents a useful benchmark that is comparable with dedicated diagnostics, such as cavity ring-down spectroscopy and Langmuir probe laser photodetachment. Neutral gas particles (atoms and molecules) are calculated assuming a fixed plasma background. This gas-plasma decoupling is necessary due to the different timescales of plasma (microseconds) and gas kinetics (milliseconds).

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related concepts (33)
Plasma (physics)
Plasma () is one of four fundamental states of matter, characterized by the presence of a significant portion of charged particles in any combination of ions or electrons. It is the most abundant form of ordinary matter in the universe, being mostly associated with stars, including the Sun. Extending to the rarefied intracluster medium and possibly to intergalactic regions, plasma can be artificially generated by heating a neutral gas or subjecting it to a strong electromagnetic field.
Ion thruster
An ion thruster, ion drive, or ion engine is a form of electric propulsion used for spacecraft propulsion. It creates thrust by accelerating ions using electricity. An ion thruster ionizes a neutral gas by extracting some electrons out of atoms, creating a cloud of positive ions. Ion thrusters are categorized as either electrostatic or electromagnetic. Electrostatic thruster ions are accelerated by the Coulomb force along the electric field direction.
Neutral-beam injection
Neutral-beam injection (NBI) is one method used to heat plasma inside a fusion device consisting in a beam of high-energy neutral particles that can enter the magnetic confinement field. When these neutral particles are ionized by collision with the plasma particles, they are kept in the plasma by the confining magnetic field and can transfer most of their energy by further collisions with the plasma. By tangential injection in the torus, neutral beams also provide momentum to the plasma and current drive, one essential feature for long pulses of burning plasmas.
Show more
Related publications (39)

Investigating the impact of the molecular charge-exchange rate on detached SOLPS-ITER simulations

Basil Duval, Holger Reimerdes, Christian Gabriel Theiler, Kevin Henricus Annemarie Verhaegh

Plasma-molecular interactions generate molecular ions which react with the plasma and contribute to detachment through molecular activated recombination (MAR), reducing the ion target flux, and molecular activated dissociation (MAD), both of which create e ...
IOP Publishing Ltd2023

Study of fast-ion-driven toroidal Alfvén eigenmodes impacting on the global confinement in TCV L-mode plasmas

Stefano Coda, Laurent Villard, Stephan Brunner, Justin Richard Ball, Oleg Krutkin, Luke Simons, Umesh Kumar, Baruch Rofman, Jesús Poley Sanjuán, Javier García Hernández, Matteo Vallar, Aylwin Iantchenko, Samuele Mazzi

Following recent observations of unstable Toroidal Alfven Eigenmodes (TAEs) in a counter-current Neutral Beam Injection (NBI) scenario developed in TCV, an in-depth analysis of the impact of such modes on the global confinement and performance is carried o ...
2023

Negative ion density in the ion source SPIDER in Cs free conditions

Riccardo Agnello

The SPIDER experiment, operated at the Neutral Beam Test Facility of Consorzio RFX, Padua, hosts the prototype of the H-/D- ion source for the ITER neutral beam injectors. The maximization of the ion current extracted from the source and the minimization o ...
2022
Show more
Related MOOCs (7)
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Applications
Learn about plasma applications from nuclear fusion powering the sun, to making integrated circuits, to generating electricity.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.