An ion thruster, ion drive, or ion engine is a form of electric propulsion used for spacecraft propulsion. It creates thrust by accelerating ions using electricity. An ion thruster ionizes a neutral gas by extracting some electrons out of atoms, creating a cloud of positive ions. Ion thrusters are categorized as either electrostatic or electromagnetic. Electrostatic thruster ions are accelerated by the Coulomb force along the electric field direction. Temporarily stored electrons are reinjected by a neutralizer in the cloud of ions after it has passed through the electrostatic grid, so the gas becomes neutral again and can freely disperse in space without any further electrical interaction with the thruster. By contrast, electromagnetic thruster ions are accelerated by the Lorentz force to accelerate all species (free electrons as well as positive and negative ions) in the same direction whatever their electric charge, and are specifically referred to as plasma propulsion engines, where the electric field is not in the direction of the acceleration. Ion thrusters in operation typically consume 1–7 kW of power, have exhaust velocities around 20–50 km/s (Isp 2000–5000 s), and possess thrusts of 25–250 mN and a propulsive efficiency 65–80% though experimental versions have achieved , . The Deep Space 1 spacecraft, powered by an ion thruster, changed velocity by while consuming less than of xenon. The Dawn spacecraft broke the record, with a velocity change of , though it was only half as efficient, requiring of xenon. Applications include control of the orientation and position of orbiting satellites (some satellites have dozens of low-power ion thrusters), use as a main propulsion engine for low-mass robotic space vehicles (such as Deep Space 1 and Dawn), and serving as propulsion thrusters for crewed spacecraft and space stations (e.g. Tiangong). Ion thrust engines are generally practical only in the vacuum of space as the engine's minuscule thrust cannot overcome any significant air resistance without radical design changes, as may be found in the 'Atmosphere Breathing Electric Propulsion' concept.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related MOOCs (10)
Space Mission Design and Operations
Learn the concepts used in the design of space missions, manned or unmanned, and operations, based on the professional experience of the lecturer.
Space Mission Design and Operations
Learn the concepts used in the design of space missions, manned or unmanned, and operations, based on the professional experience of the lecturer.
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.