Publication

Microscopic interplay of temperature and disorder of a one-dimensional elastic interface

Abstract

Elastic interfaces display scale-invariant geometrical fluctuations at sufficiently large lengthscales. Their asymptotic static roughness then follows a power-law behavior, whose associated exponent provides a robust signature of the universality class to which they belong. The associated prefactor has instead a nonuniversal amplitude fixed by the microscopic interplay between thermal fluctuations and disorder, usually hidden below experimental resolution. Here we compute numerically the roughness of a one-dimensional elastic interface subject to both thermal fluctuations and a quenched disorder with a finite correlation length. We evidence the existence of a power-law regime at short lengthscales. We determine the corresponding exponent ζdis and find compelling numerical evidence that, contrarily to available analytic predictions, one has ζdis

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.