**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Characterization of shear deformations in reinforced concrete members without shear reinforcement

Raffaele Cantone, Miguel Fernández Ruiz, Aurelio Muttoni, Andri Setiawan

*ELSEVIER SCI LTD, *2022

Journal paper

Journal paper

Abstract

The load-carrying capacity of many reinforced concrete structures is governed by shear failures, occurring before reaching the flexural capacity of the member. For redundant systems, such as slabs subjected to concentrated loads, local shear failures (typically initiated at locations with highest shear forces) can however occur after redistributions of internal forces due to the propagation of the shear cracks. Such process can depend upon the development of shear strains and the softening response of the member and can be stable or unstable. A suitable understanding and modelling of the complete shear response of reinforced concrete, including its deformations both for its pre-and post-peak branches, is thus instrumental for a consistent and comprehensive analysis of the shear response and strength of redundant elements.Such topic has received little attention in the past and analyses of redistributions of internal forces in concrete structures are often performed on the basis of refined flexural models, but coarse considerations for shear strains (typically elastic laws). This situation is a consequence of the lack of consistent experimental measurements on the shear deformations of reinforced members both before and after reaching the maximum shear capacity. Currently, however, the advent of refined measurements techniques such as Digital Image Correlation allows for an accurate tracking of the shear strains and for a fundamental understanding of its development. In this paper, taking advantage of such techniques, a comprehensive approach for determining the shear strains and their distribution across the depth of a section is presented. This approach allows reproducing accurately the development of shear strains and to predict the load-carrying capacity of redundant systems. The model is validated with selected test data and is considered as an effort to contribute to future numerical implementations of reinforced concrete shell models with realistic out-of-plane responses.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts

Loading

Related publications

Loading

Related concepts (11)

Reinforced concrete

Reinforced concrete, also called ferroconcrete, is a composite material in which concrete's relatively low tensile strength and ductility are compensated for by the inclusion of reinforcement having h

Deformation (physics)

In physics and continuum mechanics, deformation is the transformation of a body from a reference configuration to a current configuration. A configuration is a set containing the positions of all

Concrete

Concrete is a composite material composed of aggregate bonded together with a fluid cement that cures over time. Concrete is the second-most-used substance in the world after water, and is the most w

Related publications (43)

Loading

Loading

Loading

Katrin Beyer, Panagiotis Mergos

Quasi-static cyclic tests on reinforced concrete (RC) walls have shown that shear deformations can constitute a significant ratio of the total deformations when the wall is loaded beyond the elastic regime. For slender RC walls that form a stable flexural mechanism the ratio of shear to flexural deformations remains approximately constant over the entire range of imposed displacement ductilities. This paper proposes a method for incorporating shear-flexure interaction effects in equivalent frame models of slender RC walls by coupling the shear force-shear strain relationship to the curvature and axial strain in the member. The suggested methodology is incorporated in a finite element consisting of two interacting spread inelasticity sub-elements representing flexural and shear response, respectively. The element is implemented in the general finite element code IDARC and validated against experimental results of RC cantilever walls. In a second step, it is applied in inelastic static and dynamic analyses of tall wall and wall-frame systems. It is shown that ignoring shear-flexure interaction may lead to erroneous predictions in particular of local ductility and storey drift demands.

2014The addition of a thin overlay of Ultra-High Performance Fibre Reinforced Concrete (UHPFRC) to Reinforced Concrete (RC) members is an emerging technique to strengthen and protect existing structures and to design durable new structures. Combining UHPFRC with closely spaced, small-diameter steel rebars in Reinforced UHPFRC (R-UHPFRC) layers improves the UHPFRC's strain hardening behaviour. For reasons of practicality, R-UHPFRC layers are cast or glued (in the case of prefabricated elements) on top of RC members, thus changing the latter into R-UHPFRC - RC composite members. The high strength and deformation capacity of R-UHPFRC elements make them a suitable external flexural reinforcement for RC members over intermediate supports, e.g., bridge decks and slabs or beams in buildings. Over reinforcement of RC beams and slabs with tensile flexural reinforcement can result in their shear failure at either a lower resistance or deformation than the associated values for member failure in flexure. A comprehensive experimental program was conducted to study the flexure-shear behaviour of R-UHPFRC - RC composite beams. The program comprises two test series on cantilever beams and continuous beams. The test parameters include shear span-depth ratio (a/d), the amount of transverse reinforcement ( ρν), the amount of longitudinal reinforcement, and the strength and bond condition of the R-UHPFRC rebars. The experimental results reveal the different failure modes of R-UHPFRC - RC composite members and the contribution of the R-UHPFRC elements to the member resistance, ductility and capacity to redistribute the internal stress. It was shown that in R-UHPFRC - RC beams with ribbed rebars and a shear span to depth ratio greater than 2.5 the stresses are carried by beam action. Depending on the degree of longitudinal reinforcement, all but two of the beams with 3.0≤a/d≤3.4 and ρν≤0.17 had a flexure-shear failure; the rest failed in flexure. The flexure-shear failure of the composite beams was at an approximately equal rotation level as their RC reference beam but at a resistance 2.3 times that of the RC beam. This is due to (1) the debonding interface zone between the elements that allows the R-UHPFRC - RC beams to rotate more freely and (2) the out-of-plane resistance of the R-UHPFRC element that contributes to the shear resistance. The internal flow of forces and the structural response of composite members strongly depend on the bond condition between the R-UHPFRC and RC, the UHPFRC and its rebars, as well as the concrete and its rebars. Cracking of the concrete along the interface zone causes bond reduction, i.e., softening of the shear connection, between the two elements. In presence of high shear stresses and diagonal flexure-shear cracks, interface zone softening is observed between the elements prior to the maximum resistance, while UHPFRC is strain hardening. The cause of this softening behaviour is the prying action due to the relative rotational movement of the RC rigid bodies separated by the flexure-shear cracks. Static and kinematic solutions of the theory of plasticity for RC beams are extended to predict the collapse load of R-UHPFRC - RC composite beams at the ultimate limit state. A mechanical model for predicting the structural response of composite beams is proposed. In combination with truss models, the concept of an R-UHPFRC - RC plastic hinge is introduced to calculate the force-displacement response of composite beams. The failure criterion based on the collapse mechanisms (kinematic solutions) sets the limit of the force-displacement response. The model is corroborated by the experimental results. This model provides a tool for analysis of RC members reinforced with an added tensile R-UHPFRC element.

Miguel Fernández Ruiz, Aurelio Muttoni

The Critical Shear Crack Theory (CSCT) is a consistent approach used for shear design of one- and two-way slabs failing in shear and punching shear respectively. The theory is based on a mechanical model allowing to determine the amount of shear force that can be carried by cracked concrete accounting for the opening and roughness of a critical shear crack leading to failure. The theory was first developed for punching design of slab-column connections without shear reinforcement. Its principles were later extended to other cases such as slabs with shear reinforcement, fibre-reinforced concrete or slabs strengthened with CFRP strips and one-way slabs without shear reinforcement. The generality, accuracy and ease-of-use of this theory led to its implementation into design codes (such as the fib Model Code 2010 or the Swiss Code for concrete structures). The design expressions of the CSCT consist of a failure criterion and a load-deformation relationship, whose intersection defines the load and the deformation capacity at punching failure. They are clear and physically understandable, and can be written in a compact manner to be used for design of new structures. With respect to the assessment of the maximum punching capacity, the conventional design expressions of the CSCT can also be used, although they required to be solved iteratively. In order to enhance the usability of the design equations of the CSCT, particularly for the punching assessment of existing structures, this paper presents closed-form design expressions developed within the frame of the CSCT. These expressions allow for direct design and assessment of the failure load. The closed-form expressions keep the generality and advantages of the CSCT approach, but they allow for a faster and more convenient use in practice. In this paper, the derivation of these expressions on the basis of the CSCT principles is presented as well as its benefits and comparison to experimental results and the original design formulation.

2016