The power of adaptivity in source identification with time queries on the path
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Graph machine learning offers a powerful framework with natural applications in scientific fields such as chemistry, biology and material sciences. By representing data as a graph, we encode the prior knowledge that the data is composed of a set of entitie ...
Spectral algorithms are some of the main tools in optimization and inference problems on graphs. Typically, the graph is encoded as a matrix and eigenvectors and eigenvalues of the matrix are then used to solve the given graph problem. Spectral algorithms ...
This work presents a graph neural network (GNN) framework for solving the maximum independent set (MIS) problem, inspired by dynamic programming (DP). Specifically, given a graph, we propose a DP-like recursive algorithm based on GNNs that firstly construc ...
When can a unimodular random planar graph be drawn in the Euclidean or the hyperbolic plane in a way that the distribution of the random drawing is isometry-invariant? This question was answered for one-ended unimodular graphs in Benjamini and Timar, using ...
In this paper we study first passage percolation on a random graph model, the configuration model. We first introduce the notions of weighted diameter, which is the maximum of the weighted lengths of all optimal paths between any two vertices in the graph, ...
Recent years have witnessed a rise in real-world data captured with rich structural information that can be better depicted by multi-relational or heterogeneous graphs.However, research on relational representation learning has so far mostly focused on the ...
The metric dimension (MD) of a graph is a combinatorial notion capturing the minimum number of landmark nodes needed to distinguish every pair of nodes in the graph based on graph distance. We study how much the MD can increase if we add a single edge to t ...
The articles in this special section focus on graph signal processing. Generically, the networks that sustain our societies can be understood as complex systems formed by multiple nodes, where global network behavior arises from local interactions between ...
We study in this thesis the asymptotic behavior of optimal paths on a random graph model, the configuration model, for which we assign continuous random positive weights on its edges.
We start by describing the asymptotic behavior of the diameter and the f ...
Graph learning methods have recently been receiving increasing interest as means to infer structure in datasets. Most of the recent approaches focus on different relationships between a graph and data sample distributions, mostly in settings where all avai ...