Publication

Analytical Computation of Power Grids’ Sensitivity Coefficients with Voltage-Dependent Injections

Abstract

With the increasing need of real-time regulation in power systems, grid-aware-control-frameworks are relying more often on sensitivity coefficients (SCs) to formulate and efficiently solve optimal control problems. As known, SCs are the derivatives of controlled quantities (e.g. nodal voltages at PQ nodes and branch currents) with respect to control variables i.e. nodal active and reactive power injections at PQ nodes, nodal voltage magnitudes and nodal active power injections at PV nodes and nodal voltage magnitudes and phase-angles at slack nodes. In a real control application, the knowledge of the system state, coming from a state-estimation process, allows for the direct computation of SCs without the need of a load-flow. Algorithms for this computation have been already proposed in the literature for PQ nodes’ nodal voltage SCs under the assumption of constant nodal power injections. The aim of this paper is to propose an analytical derivation of all node types (i.e. PQ, PV and slack) nodal voltage SCs for power grids with generic topologies, number of phases and voltage-dependent nodal power injection models. The paper also includes an exhaustive list of all other SCs that can be directly computed using nodal voltage SCs, a computational complexity analysis of the proposed method and a numerical benchmarking.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.