Hierarchical tensile structures with ultralow mechanical dissipation
Related publications (32)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Fields of technology as diverse as microwave filter construction, characterization of material interfaces with atomic precision, and detection of gravitational waves from astronomical sources employ mechanical resonators at their core. The utility of mecha ...
Humidity is a critical environmental factor in various applications, and its temperature dependence must be considered when developing thermo-hygrometer fiber sensors. The optical fibers that constitute the sensor must have a temperature reference, which s ...
Graphite has been intensively studied, yet its electron spins dynamics remains an unresolved problem even 70 years after the first experiments. The central quantities, the longitudinal (T-1) and transverse (T-2) relaxation times were postulated to be equal ...
The unique mechanical and electrical properties of graphene make it an exciting material for nanoelectromechanical systems (NEMS). NEMS resonators with graphene springs facilitate studies of graphene's fundamental material characteristics and thus enable i ...
Nanostructured graphitic materials, including graphene hosting Å to nanometer-sized pores, have attracted attention for various applications such as separations, sensors, and energy storage. Graphene with Å-scale pores is a promising next-generation materi ...
Coupling of space-separated resonators is interesting for quantum and communication technologies. In this work, we show that antiferromagnetic resonance in separated parallel-plane slabs of hematite (alpha-Fe2O3) couple cooperatively to terahertz electroma ...
Carbon nano-onions are a class of nanomaterials that can exhibit long electron spin relaxation times at room temperature and thus hold promise as potential building blocks for spintronics and quantum information processing devices. Despite first being synt ...
Strain is inevitable in two-dimensional (2D) materials, regardless of whether the film is suspended or supported. However, the direct measurement of strain response at the atomic scale is challenging due to the difficulties of maintaining both flexibility ...
We provide a theoretical description of dynamical heterogeneities in glass-forming liquids, based on the premise that relaxation occurs via local rearrangements coupled by elasticity. In our framework, the growth of the dynamical correlation length e and o ...
Optical resonators enable the generation, manipulation, and storage of electromagnetic waves. The physics underlying their operation is determined by the interference of electromagnetic waves, giving rise to the resonance spectrum. This mechanism causes th ...