Publication

Dynamical Control of Nuclear Isomer Depletion via Electron Vortex Beams

Abstract

Some nuclear isomers are known to store a large amount of energy over long periods of time, with a very high energy-to-mass ratio. Here, we describe a protocol to achieve the external control of the isomeric nuclear decay by using electron vortex beams whose wave function has been especially designed and reshaped on demand. Recombination of these electrons into the isomer???s atomic shell can lead to the controlled release of the stored nuclear energy. On the example of 93mMo, we show theoretically that the use of tailored electron vortex beams increases the depletion by 4 orders of magnitude compared to the spontaneous nuclear decay of the isomer. Furthermore, specific orbitals can sustain an enhancement of the recombination cross section for vortex electron beams by as much as 6 orders of magnitude, providing a handle for manipulating the capture mechanism. These findings open new prospects for controlling the interplay between atomic and nuclear degrees of freedom, with potential energy-related and high-energy radiation source applications.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.