Implicit graphIn the study of graph algorithms, an implicit graph representation (or more simply implicit graph) is a graph whose vertices or edges are not represented as explicit objects in a computer's memory, but rather are determined algorithmically from some other input, for example a computable function. The notion of an implicit graph is common in various search algorithms which are described in terms of graphs. In this context, an implicit graph may be defined as a set of rules to define all neighbors for any specified vertex.
Polynomial hierarchyIn computational complexity theory, the polynomial hierarchy (sometimes called the polynomial-time hierarchy) is a hierarchy of complexity classes that generalize the classes NP and co-NP. Each class in the hierarchy is contained within PSPACE. The hierarchy can be defined using oracle machines or alternating Turing machines. It is a resource-bounded counterpart to the arithmetical hierarchy and analytical hierarchy from mathematical logic. The union of the classes in the hierarchy is denoted PH.
Vertex cover in hypergraphsIn graph theory, a vertex cover in a hypergraph is a set of vertices, such that every hyperedge of the hypergraph contains at least one vertex of that set. It is an extension of the notion of vertex cover in a graph. An equivalent term is a hitting set: given a collection of sets, a set which intersects all sets in the collection in at least one element is called a hitting set. The equivalence can be seen by mapping the sets in the collection onto hyperedges. Another equivalent term, used more in a combinatorial context, is transversal.
Clique coverIn graph theory, a clique cover or partition into cliques of a given undirected graph is a partition of the vertices into cliques, subsets of vertices within which every two vertices are adjacent. A minimum clique cover is a clique cover that uses as few cliques as possible. The minimum k for which a clique cover exists is called the clique cover number of the given graph. A clique cover of a graph G may be seen as a graph coloring of the complement graph of G, the graph on the same vertex set that has edges between non-adjacent vertices of G.
Algebraic graph theoryAlgebraic graph theory is a branch of mathematics in which algebraic methods are applied to problems about graphs. This is in contrast to geometric, combinatoric, or algorithmic approaches. There are three main branches of algebraic graph theory, involving the use of linear algebra, the use of group theory, and the study of graph invariants. The first branch of algebraic graph theory involves the study of graphs in connection with linear algebra.
Moore graphIn graph theory, a Moore graph is a regular graph whose girth (the shortest cycle length) is more than twice its diameter (the distance between the farthest two vertices). If the degree of such a graph is d and its diameter is k, its girth must equal 2k + 1. This is true, for a graph of degree d and diameter k, if and only if its number of vertices equals an upper bound on the largest possible number of vertices in any graph with this degree and diameter. Therefore, these graphs solve the degree diameter problem for their parameters.
Graph labelingIn the mathematical discipline of graph theory, a graph labelling is the assignment of labels, traditionally represented by integers, to edges and/or vertices of a graph. Formally, given a graph G = (V, E), a vertex labelling is a function of V to a set of labels; a graph with such a function defined is called a vertex-labeled graph. Likewise, an edge labelling is a function of E to a set of labels. In this case, the graph is called an edge-labeled graph. When the edge labels are members of an ordered set (e.
Rainbow matchingIn the mathematical discipline of graph theory, a rainbow matching in an edge-colored graph is a matching in which all the edges have distinct colors. Given an edge-colored graph G = (V,E), a rainbow matching M in G is a set of pairwise non-adjacent edges, that is, no two edges share a common vertex, such that all the edges in the set have distinct colors. A maximum rainbow matching is a rainbow matching that contains the largest possible number of edges. Rainbow matchings are of particular interest given their connection to transversals of Latin squares.
Strong product of graphsIn graph theory, the strong product is a way of combining two graphs to make a larger graph. Two vertices are adjacent in the strong product when they come from pairs of vertices in the factor graphs that are either adjacent or identical. The strong product is one of several different graph product operations that have been studied in graph theory. The strong product of any two graphs can be constructed as the union of two other products of the same two graphs, the Cartesian product of graphs and the tensor product of graphs.
PlanarizationIn the mathematical field of graph theory, planarization is a method of extending graph drawing methods from planar graphs to graphs that are not planar, by embedding the non-planar graphs within a larger planar graph. Planarization may be performed by using any method to find a drawing (with crossings) for the given graph, and then replacing each crossing point by a new artificial vertex, causing each crossed edge to be subdivided into a path. The original graph will be represented as an immersion minor of its planarization.