Fast global spectral methods for three-dimensional partial differential equations
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Finite elements methods (FEMs) have benefited from decades of development to solve partial differential equations (PDEs) and to simulate physical systems. In the recent years, machine learning (ML) and artificial neural networks (ANN) have shown great pote ...
In this thesis we explore uncertainty quantification of forward and inverse problems involving differential equations. Differential equations are widely employed for modeling natural and social phenomena, with applications in engineering, chemistry, meteor ...
We show that the finite time blow up solutions for the co-rotational Wave Maps problem constructed in [7,15] are stable under suitably small perturbations within the co-rotational class, provided the scaling parameter λ(t)=t−1−ν is sufficiently close to ...
In this thesis, we study two distinct problems.
The first problem consists of studying the linear system of partial differential equations which consists of taking a k-form, and applying the exterior derivative 'd' to it and add the wedge product with a 1- ...
Linear matrix equations, such as the Sylvester and Lyapunov equations, play an important role in various applications, including the stability analysis and dimensionality reduction of linear dynamical control systems and the solution of partial differentia ...
We propose a data-driven Model Order Reduction (MOR) technique, based on Artificial Neural Networks (ANNs), applicable to dynamical systems arising from Ordinary Differential Equations (ODEs) or time-dependent Partial Differential Equations (PDEs). Unlike ...
Families of energy operators and generalized energy operators have recently been introduced in the definition of the solutions of linear Partial Differential Equations (PDEs) with a particular application to the wave equation [ 15]. To do so, the author ha ...
We study the system of linear partial differential equations given by dw + a Lambda w = f, on open subsets of R-n, together with the algebraic equation da Lambda u = beta, where a is a given 1-form, f is a given (k + 1)-form, beta is a given k + 2-form, w ...
Essentially nonoscillatory (ENO) and weighted ENO (WENO) methods on equidistant Cartesian grids are widely used to solve partial differential equations with discontinuous solutions. The RBF-ENO method is highly flexible in terms of geometry, but its stenci ...
Linear matrix equations, such as the Sylvester and Lyapunov equations, play an important role in various applications, including the stability analysis and dimensionality reduction of linear dynamical control systems and the solution of partial differentia ...