Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
We study the system of linear partial differential equations given by dw + a Lambda w = f, on open subsets of R-n, together with the algebraic equation da Lambda u = beta, where a is a given 1-form, f is a given (k + 1)-form, beta is a given k + 2-form, w and u are unknown k-forms. We show that if rank[da] >= 2(k+1) those equations have at most one solution, if rank[da] equivalent to 2m >= 2(k + 2) they are equivalent with beta = df + a Lambda f and if rank[da] equivalent to 2m >= 2(n - k) the first equation always admits a solution. Moreover, the differential equation is closely linked to the Poincare lemma. Nevertheless, as soon as a is nonexact, the addition of the term a Lambda w drastically changes the problem.
Fernando José Henriquez Barraza
Maria Colombo, Silja Noëmi Aline Haffter