Nuclear quantum effects at aqueous metal interfaces captured by molecular dynamics simulations
Related publications (33)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Computational chemistry aims to simulate reactions and molecular properties at the atomic scale, advancing the design of novel compounds and materials with economic, environmental, and societal implications. However, the field relies on approximate quantum ...
The modeling of non-covalent interactions, solvation effects, and chemical reactions in complex molecular environment is a challenging task. Current state-of-the-art approaches often rely on static computations using implicit solvent models and harmonic ap ...
Obtaining a precise theoretical description of the spectral properties of liquid water poses challenges for both molecular dynamics (MD) and electronic structure methods. The lower computational cost of the Koopmans-compliant functionals with respect to Gr ...
Over the last two decades, many technological and scientific discoveries, ranging from the development of materials for energy conversion and storage through the design of new drugs, have been accelerated by the use of preliminary in silico experiments, to ...
We present a generally applicable computational framework for the efficient and accurate characterization of molecular structural patterns and acid properties in an explicit solvent using H2O2 and CH3SO3H in phenol as an example. To address the challenges ...
Atomistic simulations are a bottom up approach that predict properties
of materials by modelling the quantum mechanical behaviour of all electrons
and nuclei present in a system. These simulations, however, routinely assume
nuclei to be classical particles ...
Atomistic simulations of chemical, biological and materials systems have become increasingly precise and predictive owing to the development of accurate and efficient techniques that describe the quantum mechanical behaviour of electrons. Nevertheless, the ...
We combine classical and ring polymer molecular dynamics simulations with the molecular jump model to provide a molecular description of the nuclear quantum effects (NQEs) on water reorientation and hydrogen-bond dynamics in liquid H2O and D2O. We show tha ...
With an increase of computational capabilities, ab initio molecular dynamics becomes the natural choice for exploring the nuclear dynamics of solids. As based on classical mechanics, the validity of this approach is, in-principle, limited to the high-T reg ...
The temperature dependence of the femtosecond elastic second harmonic scattering (fs-ESHS) response of bulk light and heavy water and their electrolyte solutions is presented. We observe clear temperature dependent changes in the hydrogen (H)-bond network ...