Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We propose a variational quantum algorithm to study the real-time dynamics of quantum systems as a ground -state problem. The method is based on the original proposal of Feynman and Kitaev to encode time into a register of auxiliary qubits. We prepare the ...
Quantum computing could potentially offer faster solutions for some of today's classically intractable problems using quantum processors as computational support for quantum algorithms [1]. Quantum processors, in the most frequent embodiment, comprise an a ...
Universal quantum algorithms that prepare arbitrary n-qubit quantum states require O(2n) gate complexity. The complexity can be reduced by considering specific families of quantum states depending on the task at hand. In particular, multipartite quantum st ...
Simulating the dynamics and the non-equilibrium steady state of an open quantum system are hard computational tasks on conventional computers. For the simulation of the time evolution, several efficient quantum algorithms have recently been developed. Howe ...
VEREIN FORDERUNG OPEN ACCESS PUBLIZIERENS QUANTENWISSENSCHAF2021
Atomtronics is an emerging field that aims to manipulate ultracold atom moving in matter-wave circuits for fundamental studies in both quantum science and technological applications. In this Colloquium, recent progress in matter-wave circuitry and atomtron ...
Bosonic quantum codes redundantly encode quantum information in the states of a quantum harmonic oscillator, making it possible to detect and correct errors. Schrodinger cat codes-based on the superposition of two coherent states with opposite displacement ...
We describe a family of recursive methods for the synthesis of qubit permutations on quantum computers with limited qubit connectivity. Two objectives are of importance: circuit size and depth. In each case we combine a scalable heuristic with a nonscalabl ...
A key open question in quantum computing is whether quantum algorithms can potentially offer a significant advantage over classical algorithms for tasks of practical interest. Understanding the limits of classical computing in simulating quantum systems is ...
Quantum computing promises to revolutionize our lives, achieving unprecedented computational powers and unlocking new possibilities in drug discovery, chemical simulations and cryptography. The fundamental unit of computation of a quantum computer is the q ...
The enormous advancements in the ability to detect and manipulate single quantum states have lead to the emerging field of quantum technologies. Among these, quantum computation is the most far-reaching and challenging, aiming to solve problems that the cl ...