Publication

Geometric Percolation of Spherically Symmetric Fractal Aggregates

Claudio Grimaldi
2022
Journal paper
Abstract

The connectedness percolation threshold (phi(c)) for spherically symmetric, randomly distributed fractal aggregates is investigated as a function of the fractal dimension (d(F)) of the aggregates through a mean-field approach. A pair of aggregates (each of radius R) are considered to be connected if a pair of primary particles (each of diameter delta), one from each assembly, are located within a prescribed distance of each other. An estimate for the number of such contacts between primary particles for a pair of aggregates is combined with a mapping onto the model for fully penetrable spheres to calculate phi(c). For sufficiently large aggregates, our analysis reveals the existence of two regimes for the dependence of fc upon R/delta namely: (i) when d(F) > 1.5 aggregates form contacts near to tangency, and phi(c) approximate to (R/delta)(dF-3), whereas (ii) when d(F) < 1.5 deeper interpenetration of the aggregates is required to achieve contact formation, and phi(c) approximate to (R/delta)(-dF). For a fixed (large) value of R/delta, a minimum for fc as a function of dF occurs when d(F) = 1.5. Taken together, these dependencies consistently describe behaviors observed over the domain 1

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.