Publication

Nonperturbative Quantum Field Theory in Curved Spacetime

Kamran Salehi Vaziri
2022
EPFL thesis
Abstract

Quantum Field Theory(QFT) as one of the most promising frameworks to study high energy and condensed matter physics, has been mostly developed by perturbative methods. However, perturbative methods can only capture a small island of the space of QFTs.QFT in hyperbolic space can be used to link the conformal bootstrap and massive QFT. Conformal boundary correlators also can be studied by their general properties such as unitarity, crossing symmetry and analicity. On the other hand, by sending the curvature radius to infinity we reach to the flat-space limit in hyperbolic space. This allows us to use conformal bootstrap methods to study massive QFT in one higher dimension and calculate observables like scattering amplitudes or finding bounds on the couplings of theory. The main goal of my research during my Ph.D. would be to study QFTs in hyperbolic space to better understand strongly coupled QFTs.Hamiltonian truncation is a numerical method to study strongly coupled QFTs by imposing a UV cutoff. We use this method to study strongly coupled QFT in hyperbolic space background. For simplicity, we start with scalar field theory in 2-dimensional AdS. We expect to extract the spectrum of our theory as a function of AdS curvature and find the boundary correlation functions.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (45)
Quantum field theory
In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines classical field theory, special relativity, and quantum mechanics. QFT is used in particle physics to construct physical models of subatomic particles and in condensed matter physics to construct models of quasiparticles. QFT treats particles as excited states (also called quanta) of their underlying quantum fields, which are more fundamental than the particles.
History of quantum field theory
In particle physics, the history of quantum field theory starts with its creation by Paul Dirac, when he attempted to quantize the electromagnetic field in the late 1920s. Heisenberg was awarded the 1932 Nobel Prize in Physics "for the creation of quantum mechanics". Major advances in the theory were made in the 1940s and 1950s, leading to the introduction of renormalized quantum electrodynamics (QED). QED was so successful and accurately predictive that efforts were made to apply the same basic concepts for the other forces of nature.
Topological quantum field theory
In gauge theory and mathematical physics, a topological quantum field theory (or topological field theory or TQFT) is a quantum field theory which computes topological invariants. Although TQFTs were invented by physicists, they are also of mathematical interest, being related to, among other things, knot theory and the theory of four-manifolds in algebraic topology, and to the theory of moduli spaces in algebraic geometry. Donaldson, Jones, Witten, and Kontsevich have all won Fields Medals for mathematical work related to topological field theory.
Show more
Related publications (71)

Null energy constraints on two-dimensional RG flows

Grégoire Olivier Mathys

We study applications of spectral positivity and the averaged null energy condition (ANEC) to renormalization group (RG) flows in two-dimensional quantum field theory. We find a succinct new proof of the Zamolodchikov c-theorem, and derive further independ ...
New York2024

Bootstrapping amplitudes of scalar particles

Jan Krzysztof Marucha

Quantum Field Theories are a central object of interest of modern physics, describing fundamental interactions of matter. However, current methods give limited insight into strongly coupling theories. S-matrix bootstrap program, described in this thesis, a ...
EPFL2024

Physical and unphysical regimes of self-consistent many-body perturbation theory

Riccardo Rossi

In the standard framework of self-consistent many-body perturbation theory, the skeleton series for the self-energy is truncated at a finite order N and plugged into the Dyson equation, which is then solved for the propagator G(N). We consider two examples ...
Scipost Foundation2024
Show more
Related MOOCs (9)
Algebra (part 1)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Algebra (part 1)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Algebra (part 2)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.