Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Quantum Field Theory(QFT) as one of the most promising frameworks to study high energy and condensed matter physics, has been mostly developed by perturbative methods. However, perturbative methods can only capture a small island of the space of QFTs.QFT in hyperbolic space can be used to link the conformal bootstrap and massive QFT. Conformal boundary correlators also can be studied by their general properties such as unitarity, crossing symmetry and analicity. On the other hand, by sending the curvature radius to infinity we reach to the flat-space limit in hyperbolic space. This allows us to use conformal bootstrap methods to study massive QFT in one higher dimension and calculate observables like scattering amplitudes or finding bounds on the couplings of theory. The main goal of my research during my Ph.D. would be to study QFTs in hyperbolic space to better understand strongly coupled QFTs.Hamiltonian truncation is a numerical method to study strongly coupled QFTs by imposing a UV cutoff. We use this method to study strongly coupled QFT in hyperbolic space background. For simplicity, we start with scalar field theory in 2-dimensional AdS. We expect to extract the spectrum of our theory as a function of AdS curvature and find the boundary correlation functions.