Publication

Null energy constraints on two-dimensional RG flows

Grégoire Olivier Mathys
2024
Journal paper
Abstract

We study applications of spectral positivity and the averaged null energy condition (ANEC) to renormalization group (RG) flows in two-dimensional quantum field theory. We find a succinct new proof of the Zamolodchikov c-theorem, and derive further independent constraints along the flow. In particular, we identify a natural C-function that is a completely monotonic function of scale, meaning its derivatives satisfy the alternating inequalities (-1)nC(n)(mu 2) >= 0. The completely monotonic C-function is identical to the Zamolodchikov C-function at the endpoints, but differs along the RG flow. In addition, we apply Lorentzian techniques that we developed recently to study anomalies and RG flows in four dimensions, and show that the Zamolodchikov c-theorem can be restated as a Lorentzian sum rule relating the change in the central charge to the average null energy. This establishes that the ANEC implies the c-theorem in two dimensions, and provides a second, simpler example of the Lorentzian sum rule.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.