**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Publication# Connecting Hodge and Sakaguchi-Kuramoto through a mathematical framework for coupled oscillators on simplicial complexes

Abstract

Phase synchronizations in models of coupled oscillators such as the Kuramoto model have been widely studied with pairwise couplings on arbitrary topologies, showing many unexpected dynamical behaviors. Here, based on a recent formulation the Kuramoto model on weighted simplicial complexes with phases supported on simplices of any order k, we introduce linear and non-linear frustration terms independent of the orientation of the k + 1 simplices, as a natural generalization of the Sakaguchi-Kuramoto model to simplicial complexes. With increasingly complex simplicial complexes, we study the the dynamics of the edge simplicial Sakaguchi-Kuramoto model with nonlinear frustration to highlight the complexity of emerging dynamical behaviors. We discover various dynamical phenomena, such as the partial loss of synchronization in subspaces aligned with the Hodge subspaces and the emergence of simplicial phase re-locking in regimes of high frustration. Synchronization dynamics in the presence of higher order interactions is well represented through variations of the Kuramoto model and subject of current interest. Here, the authors study and characterize the behavior of the simplicial Kuramoto model with weights on any simplices and in the presence of linear and nonlinear frustration, defined as the simplicial Sakaguchi-Kuramoto model.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications (46)

Related MOOCs (18)

Related concepts (35)

Algebra (part 1)

Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.

Algebra (part 1)

Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.

Algebra (part 2)

Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.

Hodge structure

In mathematics, a Hodge structure, named after W. V. D. Hodge, is an algebraic structure at the level of linear algebra, similar to the one that Hodge theory gives to the cohomology groups of a smooth and compact Kähler manifold. Hodge structures have been generalized for all complex varieties (even if they are singular and non-complete) in the form of mixed Hodge structures, defined by Pierre Deligne (1970). A variation of Hodge structure is a family of Hodge structures parameterized by a manifold, first studied by Phillip Griffiths (1968).

Linear algebra

Linear algebra is the branch of mathematics concerning linear equations such as: linear maps such as: and their representations in vector spaces and through matrices. Linear algebra is central to almost all areas of mathematics. For instance, linear algebra is fundamental in modern presentations of geometry, including for defining basic objects such as lines, planes and rotations. Also, functional analysis, a branch of mathematical analysis, may be viewed as the application of linear algebra to spaces of functions.

Simplicial complex

In mathematics, a simplicial complex is a set composed of points, line segments, triangles, and their n-dimensional counterparts (see illustration). Simplicial complexes should not be confused with the more abstract notion of a simplicial set appearing in modern simplicial homotopy theory. The purely combinatorial counterpart to a simplicial complex is an abstract simplicial complex. To distinguish a simplicial complex from an abstract simplicial complex, the former is often called a geometric simplicial complex.

Romain Christophe Rémy Fleury, Benjamin Apffel

Parametric oscillators are examples of externally driven systems that can exhibit two stable states with opposite phase depending on the initial conditions. In this work, we propose to study what happens when the external forcing is perturbed by a continuo ...

2024Simplicial Kuramoto models have emerged as a diverse and intriguing class of models describing oscillators on simplices rather than nodes. In this paper, we present a unified framework to describe different variants of these models, categorized into three ...

2023Jeremy Luterbacher, Songlan Sun, Stefania Bertella, Anastasiia Komarova

Compound of the general formula (Ia), (Ib) and (Ic) R50 and R60 are different form each other and are selected from the group consisting of -R70, -ZR70, -Z-OH, -Z-NH2, -Z-SH, -Z-OC(O)R70, -OC(O)R70, - COOH and its corresponding salts, -C(O)NH2, -C(O)NH-R70 ...

2023