In mathematics, a simplicial complex is a set composed of points, line segments, triangles, and their n-dimensional counterparts (see illustration). Simplicial complexes should not be confused with the more abstract notion of a simplicial set appearing in modern simplicial homotopy theory. The purely combinatorial counterpart to a simplicial complex is an abstract simplicial complex. To distinguish a simplicial complex from an abstract simplicial complex, the former is often called a geometric simplicial complex.
A simplicial complex is a set of simplices that satisfies the following conditions:
Every face of a simplex from is also in .
The non-empty intersection of any two simplices is a face of both and .
See also the definition of an abstract simplicial complex, which loosely speaking is a simplicial complex without an associated geometry.
A simplicial k-complex is a simplicial complex where the largest dimension of any simplex in equals k. For instance, a simplicial 2-complex must contain at least one triangle, and must not contain any tetrahedra or higher-dimensional simplices.
A pure or homogeneous simplicial k-complex is a simplicial complex where every simplex of dimension less than k is a face of some simplex of dimension exactly k. Informally, a pure 1-complex "looks" like it's made of a bunch of lines, a 2-complex "looks" like it's made of a bunch of triangles, etc. An example of a non-homogeneous complex is a triangle with a line segment attached to one of its vertices. Pure simplicial complexes can be thought of as triangulations and provide a definition of polytopes.
A facet is a maximal simplex, i.e., any simplex in a complex that is not a face of any larger simplex. (Note the difference from a "face" of a simplex). A pure simplicial complex can be thought of as a complex where all facets have the same dimension. For (boundary complexes of) simplicial polytopes this coincides with the meaning from polyhedral combinatorics.
Sometimes the term face is used to refer to a simplex of a complex, not to be confused with a face of a simplex.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Homology is one of the most important tools to study topological spaces and it plays an important role in many fields of mathematics. The aim of this course is to introduce this notion, understand its
In this reading group, we will work together through recent important papers in applied topology.
Participants will take turns presenting articles, then leading a discussion of the contents.
This course will provide an introduction to model category theory, which is an abstract framework for generalizing homotopy theory beyond topological spaces and continuous maps. We will study numerous
A convex polytope is a special case of a polytope, having the additional property that it is also a convex set contained in the -dimensional Euclidean space . Most texts use the term "polytope" for a bounded convex polytope, and the word "polyhedron" for the more general, possibly unbounded object. Others (including this article) allow polytopes to be unbounded. The terms "bounded/unbounded convex polytope" will be used below whenever the boundedness is critical to the discussed issue.
A CW complex (also called cellular complex or cell complex) is a kind of a topological space that is particularly important in algebraic topology. It was introduced by J. H. C. Whitehead to meet the needs of homotopy theory. This class of spaces is broader and has some better properties than simplicial complexes, but still retains a combinatorial nature that allows for computation (often with a much smaller complex). The C stands for "closure-finite", and the W for "weak" topology.
In geometry, a vertex (: vertices or vertexes) is a point where two or more curves, lines, or edges meet. As a consequence of this definition, the point where two lines meet to form an angle and the corners of polygons and polyhedra are vertices. The vertex of an angle is the point where two rays begin or meet, where two line segments join or meet, where two lines intersect (cross), or any appropriate combination of rays, segments, and lines that result in two straight "sides" meeting at one place.
In this thesis, we apply cochain complexes as an algebraic model of space in a diverse range of mathematical and scientific settings. We begin with an algebraic-discrete Morse theory model of auto-encoding cochain data, connecting the homotopy theory of d ...
Simplicial Kuramoto models have emerged as a diverse and intriguing class of models describing oscillators on simplices rather than nodes. In this paper, we present a unified framework to describe different variants of these models, categorized into three ...
2023
, , ,
The objective of this study is to address the difficulty of simplifying the geometric model in which a differential problem is formulated, also called defeaturing, while simultaneously ensuring that the accuracy of the solution is maintained under control. ...