Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In the last decade, deep neural networks have achieved tremendous success in many fields of machine learning.However, they are shown vulnerable against adversarial attacks: well-designed, yet imperceptible, perturbations can make the state-of-the-art deep ...
The way our brain learns to disentangle complex signals into unambiguous concepts is fascinating but remains largely unknown. There is evidence, however, that hierarchical neural representations play a key role in the cortex. This thesis investigates biolo ...
EPFL2021
During the Artificial Intelligence (AI) revolution of the past decades, deep neural networks have been widely used and have achieved tremendous success in visual recognition. Unfortunately, deploying deep models is challenging because of their huge model s ...
EPFL2022
Neural networks (NNs) have been very successful in a variety of tasks ranging from machine translation to image classification. Despite their success, the reasons for their performance are still not well-understood. This thesis explores two main themes: lo ...
EPFL2021
,
Demand forecasting is becoming increasingly important as firms launch new products with short life cycles more frequently. This paper provides a framework based on state-of-the-art techniques that enables firms to use quantitative methods to forecast sales ...
2022
Artificial intelligence (AI) and machine learning (ML) have become de facto tools in many real-life applications to offer a wide range of benefits for individuals and our society. A classic ML model is typically trained with a large-scale static dataset in ...
EPFL2021
Training convolutional neural networks (CNNs) for very high-resolution images requires a large quantity of high-quality pixel-level annotations, which is extremely labor-intensive and time-consuming to produce. Moreover, professional photograph interpreter ...
Advances in scanning systems have enabled the digitization of pathology slides into Whole-Slide Images (WSIs), opening up opportunities to develop Computational Pathology (CompPath) methods for computer-aided cancer diagnosis and prognosis. CompPath has be ...
Backdoor attacks allow an attacker to embed functionality jeopardizing proper behavior of any algorithm, machine learning or not. This hidden functionality can remain inactive for normal use of the algorithm until activated by the attacker. Given how steal ...
The application of machine learning to theoretical chemistry has made it possible to combine the accuracy of quantum chemical energetics with the thorough sampling of finite-temperature fluctuations. To reach this goal, a diverse set of methods has been pr ...