**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Differentiable Signed Distance Function Rendering

Abstract

Physically-based differentiable rendering has recently emerged as an attractive new technique for solving inverse problems that recover complete 3D scene representations from images. The inversion of shape parameters is of particular interest but also poses severe challenges: shapes are intertwined with visibility, whose discontinuous nature introduces severe bias in computed derivatives unless costly precautions are taken. Shape representations like triangle meshes suffer from additional difficulties, since the continuous optimization of mesh parameters cannot introduce topological changes. One common solution to these difficulties entails representing shapes using signed distance functions (SDFs) and gradually adapting their zero level set during optimization. Previous differentiable rendering of SDFs did not fully account for visibility gradients and required the use of mask or silhouette supervision, or discretization into a triangle mesh. In this article, we show how to extend the commonly used sphere tracing algorithm so that it additionally outputs a reparameterization that provides the means to compute accurate shape parameter derivatives. At a high level, this resembles techniques for differentiable mesh rendering, though we show that the SDF representation admits a particularly efficient reparameterization that outperforms prior work. Our experiments demonstrate the reconstruction of (synthetic) objects without complex regularization or priors, using only a per-pixel RGB loss.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (3)

Physically based rendering

Physically based rendering (PBR) is a computer graphics approach that seeks to render images in a way that models the lights and surfaces with optics in the real world. It is often referred to as "Physically Based Lighting" or "Physically Based Shading". Many PBR pipelines aim to achieve photorealism. Feasible and quick approximations of the bidirectional reflectance distribution function and rendering equation are of mathematical importance in this field. Photogrammetry may be used to help discover and encode accurate optical properties of materials.

Signed distance function

In mathematics and its applications, the signed distance function (or oriented distance function) is the orthogonal distance of a given point x to the boundary of a set Ω in a metric space, with the sign determined by whether or not x is in the interior of Ω. The function has positive values at points x inside Ω, it decreases in value as x approaches the boundary of Ω where the signed distance function is zero, and it takes negative values outside of Ω. However, the alternative convention is also sometimes taken instead (i.

Parametrization (geometry)

In mathematics, and more specifically in geometry, parametrization (or parameterization; also parameterisation, parametrisation) is the process of finding parametric equations of a curve, a surface, or, more generally, a manifold or a variety, defined by an implicit equation. The inverse process is called implicitization. "To parameterize" by itself means "to express in terms of parameters". Parametrization is a mathematical process consisting of expressing the state of a system, process or model as a function of some independent quantities called parameters.