Implicit surfaceIn mathematics, an implicit surface is a surface in Euclidean space defined by an equation An implicit surface is the set of zeros of a function of three variables. Implicit means that the equation is not solved for x or y or z. The graph of a function is usually described by an equation and is called an explicit representation. The third essential description of a surface is the parametric one: where the x-, y- and z-coordinates of surface points are represented by three functions depending on common parameters .
3D modelingIn 3D computer graphics, 3D modeling is the process of developing a mathematical coordinate-based representation of any surface of an object (inanimate or living) in three dimensions via specialized software by manipulating edges, vertices, and polygons in a simulated 3D space. Three-dimensional (3D) models represent a physical body using a collection of points in 3D space, connected by various geometric entities such as triangles, lines, curved surfaces, etc.
Tessellation (computer graphics)In computer graphics, tessellation is the dividing of datasets of polygons (sometimes called vertex sets) presenting objects in a scene into suitable structures for rendering. Especially for real-time rendering, data is tessellated into triangles, for example in OpenGL 4.0 and Direct3D 11. A key advantage of tessellation for realtime graphics is that it allows detail to be dynamically added and subtracted from a 3D polygon mesh and its silhouette edges based on control parameters (often camera distance).
Polygonal modelingIn 3D computer graphics, polygonal modeling is an approach for modeling objects by representing or approximating their surfaces using polygon meshes. Polygonal modeling is well suited to scanline rendering and is therefore the method of choice for real-time computer graphics. Alternate methods of representing 3D objects include NURBS surfaces, subdivision surfaces, and equation-based (implicit surface) representations used in ray tracers. The basic object used in mesh modeling is a vertex, a point in three-dimensional space.
DerivativeIn mathematics, the derivative shows the sensitivity of change of a function's output with respect to the input. Derivatives are a fundamental tool of calculus. For example, the derivative of the position of a moving object with respect to time is the object's velocity: this measures how quickly the position of the object changes when time advances. The derivative of a function of a single variable at a chosen input value, when it exists, is the slope of the tangent line to the graph of the function at that point.
Hidden-surface determinationIn 3D computer graphics, hidden-surface determination (also known as shown-surface determination, hidden-surface removal (HSR), occlusion culling (OC) or visible-surface determination (VSD)) is the process of identifying what surfaces and parts of surfaces can be seen from a particular viewing angle. A hidden-surface determination algorithm is a solution to the visibility problem, which was one of the first major problems in the field of 3D computer graphics .
Reflection mappingIn computer graphics, environment mapping, or reflection mapping, is an efficient technique for approximating the appearance of a reflective surface by means of a precomputed texture. The texture is used to store the of the distant environment surrounding the rendered object. Several ways of storing the surrounding environment have been employed. The first technique was sphere mapping, in which a single texture contains the image of the surroundings as reflected on a spherical mirror.
Rendering (computer graphics)Rendering or image synthesis is the process of generating a photorealistic or non-photorealistic image from a 2D or 3D model by means of a computer program. The resulting image is referred to as the render. Multiple models can be defined in a scene file containing objects in a strictly defined language or data structure. The scene file contains geometry, viewpoint, texture, lighting, and shading information describing the virtual scene. The data contained in the scene file is then passed to a rendering program to be processed and output to a or raster graphics image file.
Logarithmic derivativeIn mathematics, specifically in calculus and complex analysis, the logarithmic derivative of a function f is defined by the formula where is the derivative of f. Intuitively, this is the infinitesimal relative change in f; that is, the infinitesimal absolute change in f, namely scaled by the current value of f. When f is a function f(x) of a real variable x, and takes real, strictly positive values, this is equal to the derivative of ln(f), or the natural logarithm of f.
Third derivativeIn calculus, a branch of mathematics, the third derivative or third-order derivative is the rate at which the second derivative, or the rate of change of the rate of change, is changing. The third derivative of a function can be denoted by Other notations can be used, but the above are the most common. Let . Then and . Therefore, the third derivative of f is, in this case, or, using Leibniz notation, Now for a more general definition. Let f be any function of x such that f ′′ is differentiable.