In mathematics, specifically in calculus and complex analysis, the logarithmic derivative of a function f is defined by the formula
where is the derivative of f. Intuitively, this is the infinitesimal relative change in f; that is, the infinitesimal absolute change in f, namely scaled by the current value of f.
When f is a function f(x) of a real variable x, and takes real, strictly positive values, this is equal to the derivative of ln(f), or the natural logarithm of f. This follows directly from the chain rule:
Many properties of the real logarithm also apply to the logarithmic derivative, even when the function does not take values in the positive reals. For example, since the logarithm of a product is the sum of the logarithms of the factors, we have
So for positive-real-valued functions, the logarithmic derivative of a product is the sum of the logarithmic derivatives of the factors. But we can also use the Leibniz law for the derivative of a product to get
Thus, it is true for any function that the logarithmic derivative of a product is the sum of the logarithmic derivatives of the factors (when they are defined).
A corollary to this is that the logarithmic derivative of the reciprocal of a function is the negation of the logarithmic derivative of the function:
just as the logarithm of the reciprocal of a positive real number is the negation of the logarithm of the number.
More generally, the logarithmic derivative of a quotient is the difference of the logarithmic derivatives of the dividend and the divisor:
just as the logarithm of a quotient is the difference of the logarithms of the dividend and the divisor.
Generalising in another direction, the logarithmic derivative of a power (with constant real exponent) is the product of the exponent and the logarithmic derivative of the base:
just as the logarithm of a power is the product of the exponent and the logarithm of the base.
In summary, both derivatives and logarithms have a product rule, a reciprocal rule, a quotient rule, and a power rule (compare the list of logarithmic identities); each pair of rules is related through the logarithmic derivative.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ce cours donne les connaissances fondamentales liées aux fonctions trigonométriques, logarithmiques et exponentielles. La présentation des concepts et des propositions est soutenue par une grande gamm
Ce cours donne les connaissances fondamentales liées aux fonctions trigonométriques, logarithmiques et exponentielles. La présentation des concepts et des propositions est soutenue par une grande gamm
This is a summary of differentiation rules, that is, rules for computing the derivative of a function in calculus. Unless otherwise stated, all functions are functions of real numbers (R) that return real values; although more generally, the formulae below apply wherever they are well defined — including the case of complex numbers (C). For any value of , where , if is the constant function given by , then . Let and . By the definition of the derivative, This shows that the derivative of any constant function is 0.
In calculus, the quotient rule is a method of finding the derivative of a function that is the ratio of two differentiable functions. Let , where both f and g are differentiable and The quotient rule states that the derivative of h(x) is It is provable in many ways by using other derivative rules. Given , let , then using the quotient rule: The quotient rule can be used to find the derivative of as follows: Reciprocal rule The reciprocal rule is a special case of the quotient rule in which the numerator .
In calculus, logarithmic differentiation or differentiation by taking logarithms is a method used to differentiate functions by employing the logarithmic derivative of a function f, The technique is often performed in cases where it is easier to differentiate the logarithm of a function rather than the function itself. This usually occurs in cases where the function of interest is composed of a product of a number of parts, so that a logarithmic transformation will turn it into a sum of separate parts (which is much easier to differentiate).
We consider expected performances based on max-stable random fields and we are interested in their derivatives with respect to the spatial dependence parameters of those fields. Max-stable fields, such as the Brown-Resnick and Smith fields, are very popula ...
ELSEVIER2022
,
In this note, we prove that if a subharmonic function Delta u >= 0 has pure second derivatives partial derivative(ii)u that are signed measures, then their negative part (partial derivative(ii)u)- belongs to L-1 (in particular, it is not singular). We then ...
Providence2023
, , , ,
We propose an adaptive variance-reduction method, called AdaSpider, for minimization of L-smooth, non-convex functions with a finite-sum structure. In essence, AdaSpider combines an AdaGrad-inspired [Duchi et al., 2011, McMahan & Streeter, 2010], but a fai ...