Publication

Dr.Jit: A Just-In-Time Compiler for Differentiable Rendering

Related publications (32)

Efficient and Accurate Physically-Based Differentiable Rendering

Delio Aleardo Vicini

Physically-based rendering algorithms generate photorealistic images of virtual scenes. By simulating light paths in a scene, complex physical effects such as shadows, reflections and volumetric scattering can be reproduced. Over the last decade, physicall ...
EPFL2022

Differentiable Physically Based Rendering: Algorithms, Systems and Applications

Merlin Eléazar Nimier-David

Physically based rendering methods can create photorealistic images by simulating the propagation and interaction of light in a virtual scene. Given a scene description including the shape of objects, participating media, material properties, etc., the sim ...
EPFL2022

Differentiable Signed Distance Function Rendering

Wenzel Alban Jakob, Delio Aleardo Vicini, Sébastien Nicolas Speierer

Physically-based differentiable rendering has recently emerged as an attractive new technique for solving inverse problems that recover complete 3D scene representations from images. The inversion of shape parameters is of particular interest but also pose ...
ASSOC COMPUTING MACHINERY2022

Light Path Gradients for Forward and Inverse Rendering

Tizian Lucien Zeltner

Physically based rendering is a process for photorealistic digital image synthesis and one of the core problems in computer graphics. It involves simulating the light transport, i.e. the emission, propagation, and scattering of light through a virtual scen ...
EPFL2021

Path Replay Backpropagation: Differentiating Light Paths using Constant Memory and Linear Time

Wenzel Alban Jakob, Delio Aleardo Vicini, Sébastien Nicolas Speierer

Differentiable physically-based rendering has become an indispensable tool for solving inverse problems involving light. Most applications in this area jointly optimize a large set of scene parameters to minimize an objective function, in which case revers ...
ASSOC COMPUTING MACHINERY2021

Image-Based Acquisition and Modeling of Polarimetric Reflectance

Wenzel Alban Jakob, Tizian Lucien Zeltner, Xin Tong

Realistic modeling of the bidirectional reflectance distribution function (BRDF) of scene objects is a vital prerequisite for any type of physically based rendering. In the last decades, the availability of databases containing real-world material measurem ...
ASSOC COMPUTING MACHINERY2020

Radiative Backpropagation: An Adjoint Method for Lightning-Fast Differentiable Rendering

Wenzel Alban Jakob, Sébastien Nicolas Speierer, Merlin Eléazar Nimier-David

Physically based differentiable rendering has recently evolved into a powerful tool for solving inverse problems involving light. Methods in this area perform a differentiable simulation of the physical process of light transport and scattering to estimate ...
ASSOC COMPUTING MACHINERY2020

Visual Attention and Perceptual Quality in Omnidirectional Imaging

Evgeniy Upenik

Omnidirectional imaging has reached a level of widespread availability driven by recent advances in integrated circuit technology, image sensors, and computer graphics which allow now capturing, rendering and displaying of such type of immersive content in ...
EPFL2020

Just-in-time performance without warm-up

Denys Shabalin

Scala has been developed as a language that deeply integrates with the Java ecosystem. It offers seamless interoperability with existing Java libraries. Since the Scala compiler targets Java bytecode, Scala programs have access to high-performance runtimes ...
EPFL2020

Mitsuba 2: A Retargetable Forward and Inverse Renderer

Wenzel Alban Jakob, Tizian Lucien Zeltner, Delio Aleardo Vicini, Merlin Eléazar Nimier-David

Modern rendering systems are confronted with a dauntingly large and growing set of requirements: in their pursuit of realism, physically based techniques must increasingly account for intricate properties of light, such as its spectral composition or polar ...
ASSOC COMPUTING MACHINERY2019

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.