Metric learning for kernel ridge regression: assessment of molecular similarity
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Complexity is a double-edged sword for learning algorithms when the number of available samples for training in relation to the dimension of the feature space is small. This is because simple models do not sufficiently capture the nuances of the data set, ...
Medulloblastoma (MB) is a type of brain cancer that represent roughly 25% of all brain tumors in children. In the anaplastic medulloblastoma subtype, it is important to identify the degree of irregularity and lack of organizations of cells as this correlat ...
Medulloblastoma (MB) is a type of brain cancer that represent roughly 25% of all brain tumors in children. In the anaplastic medulloblastoma subtype, it is important to identify the degree of irregularity and lack of organizations of cells as this correla ...
Imaging modalities such as Electron Microscopy (EM) and Light Microscopy (LM) can now deliver high-quality, high-resolution image stacks of neural structures. Though these imaging modalities can be used to analyze a variety of components that are critical ...
This paper addresses the problem of detecting speech utterances from a large audio archive using a simple spoken query, hence referring to this problem as "Query by Example Spoken Term Detection" (QbE-STD). This still open pattern matching problem has been ...
Using duality arguments from optimization theory, this work develops an effective distributed gradient boosting strategy for inference and classification by networked clusters of learners. By sharing local dual variables with their immediate neighbors thro ...
Learning filters to produce sparse image representations in terms of overcomplete dictionaries has emerged as a powerful way to create image features for many different purposes. Unfortunately, these filters are usually both numerous and non-separable, mak ...
Classifiers based on sparse representations have recently been shown to provide excellent results in many visual recognition and classification tasks. However, the high cost of computing sparse representations at test time is a major obstacle that limits t ...
In this paper, we characterize the Ninapro database and its use as a benchmark for hand prosthesis evaluation. The database is a publicly available resource that aims to support research on advanced myoelectric hand prostheses. The database is obtained by ...
In recent years, Machine Learning based Computer Vision techniques made impressive progress. These algorithms proved particularly efficient for image classification or detection of isolated objects. From a probabilistic perspective, these methods can predi ...